MS Asymptotics For Stochastic Processes

Collection of results on
Stoch. proceses:
elementary definitions;
important aoymploriss

1. Elementary definitions
\rightarrow The goal of this memory sheet is to compile a nuenber of asymptotic results, akin to the standard versions of LLN\& CLT For iid-sequences of sudors variables, for stochastic processes (in Khis cares sequences of r.v.s) of in principle arbitrary dependence structure.
The way to do this hex is as follows:

- Define importand concepts sijorously
- Recap modes of converence of stochastic sequences
- Asymptotic theory for Machar Procenes
- Asymptotic theory for general process
- useful mothy for theory les. dynamic programming); hew aruuptions \& hew wy counts
light aron mpphonis general bat

>Let's go over some definitions; knowledge prerequisites:
- MBMT for σ-fields, uneasures, etc.
- MBI2 for Lebesque-intyralión
- MSCE for conditional expectations

DEF 1.1 (Stoch, procen, filtration). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a p- space and let τ be some index set. A strchastic process $\left(x_{1}\right)_{t \in \tau}$ is a family of random
variables, $\forall t \in \tau: x_{t}:(\Omega, A) \rightarrow\left(\mathbb{R}^{d}, B\left(\mathbb{R}^{d}\right)\right.$. variables, $\forall t \in \tau: x_{t}:(\Omega, A) \rightarrow\left(\mathbb{R}^{d}, B\left(\mathbb{R}^{d}\right)\right)$.
If T is a totally ordered set, we may define the sequence of σ-fields $\left(\mathcal{F}_{t}\right)$ with $\forall s \geqslant t, F_{s} \geq F_{t}$ and $\mathcal{F}_{t} \in A$ $\forall t$; we call $\left(F_{t}\right)_{t \in \tau}$ a Filtration on $(\Omega, C A, \mathbb{P})$.
If we have $\sigma\left(X_{t}\right) \equiv X_{t}^{-1}(\beta(\mathbb{R})) \subseteq F_{t} \quad \forall t \in \mathcal{T}$, we call $\left(X_{t}\right)_{t \in \mathcal{T}}$ adapted to $\left(F_{t}\right)_{t \in T}$.
Often, given a process $\left(X_{t}\right)_{t \in \mathbb{Z}}$ on (Ω, A, \mathbb{P}), we define
for $t \in \mathbb{Z}, n \in \mathbb{N} \cup\{-\infty\}, m \in\{k \in \mathbb{N}: k \geq n\} \cup\{+\infty\}$,
and the canonical filtration
$F_{t}:=\sigma\left(\left\{x_{t-i}\right\}_{i z 0}\right)=\sigma\left(U_{i z 0} F_{t-i, t}\right)$.
Removes:

- Usually, and always in eur context here, $\tau \equiv \mathbb{Z}$.
- $\left(F_{t}\right)_{t \in T}$ is uncout to captain the Flow of information; informally, it models what sort of events may be observed) known at any point $t \in J_{;}$wog, we may set $A:=\sigma\left(U_{t \in \mathbb{Z}} F_{t}\right)=\sigma\left(\left\{x_{t}\right\}_{t \in \mathbb{Z}}\right)$ for $T \equiv \mathbb{Z}$
- For notational convenience, we write $\mathcal{L}\left(x_{t}\right)$ in reference to $P_{x_{t}} \equiv \mathbb{P}_{0} X_{t}^{-1}$; analogously for $\left[\left(\left(X_{s}\right)_{s \in J \subseteq \tau}\right)\right.$
From now on, fix $\tau \equiv \mathbb{Z}$, and some $(\Omega, \cup A, \mathbb{P})$. (While not important here, we usually choose $(\Omega, A) \equiv\left(\mathbb{R}^{\mathbb{Z}}, \mathbb{R}^{\prime}(\mathbb{R}){ }^{(12)}\right)$.)
$>$ A core concept for stochastic processes is that of shationarity (or roughly the distribution always staying in the same place)
DiP 1.2 (Stationavity). Let $\left(X_{t}\right)$ be a process. We call $\left(X_{t}\right)$ strictly stationnary if

$$
\forall t \in \mathbb{Z}, \forall m, s \geqslant 1, \mathcal{L}\left(x_{t}, \ldots, x_{t+s}\right)=\mathcal{L}\left(x_{t+m}, \ldots, x_{t+m+s}\right) .
$$

We call $\left(x_{t}\right)$ weakly stationary (or "covariance stationary") if $X_{t} \in \mathcal{L}^{2}(\mathbb{P}) \forall t$ and if $\forall t \in \mathbb{Z} \forall k \in \mathbb{N}_{0}$,

$$
\left\{\begin{array}{l}
\mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(X_{n}\right) \\
\mathbb{E}\left(X_{t} X_{t-k}\right)=\mathbb{E}\left(X_{n} X_{n-k}\right) .
\end{array} \text { (first } 2^{\text {nd }}\right. \text { moments exist and are time-incariant) }
$$

Generally, weal slaty never implies strict static and str. Sty implies w. state if $\left(X_{t}\right) \in \mathcal{Z}^{2}(\mathbb{P})$ (shorthand for $\left.X_{t} \in \mathcal{Z}^{2}(\mathbb{P}) \forall t \in \mathbb{Z}\right)$.
$>$ Stationarity is usually required when haachling with stock proc.s - another often employed, but even more uninteciitive concept is that of ergogficity; roughly, m erjocie process is such that along \mathbb{Z} it abs. trivet's , though its entire range- it never gets stack on a particular subset, once it has entered such a set. ("restricting the memory of the process")
DEF 1.3 (Shift-invariance; Ergodicity). Let $\left(x_{t}\right)$ be a process on $(\Omega, C A, \mathbb{P})$. We define the shift-operator $\operatorname{sor}\left(x_{0}\right)$,

$$
\tau_{x}: \Omega \rightarrow \Omega: \omega \mapsto \tau_{x}(w) \text { s. } h . x_{t}\left(\tau_{x}(\omega)\right)=x_{t+1}(\omega) \forall t \in \mathbb{Z} .
$$

(concisely: τ s.th. $\forall t ~ X_{t} \circ \tau_{x}=x_{t+1}$; τ_{x} shifts ω bach wards s. th. x_{t} at $\tau(\omega)$ gives The alae of x_{t+1} at onijinal ω; most easily ven For I lusuch ' way of defining Stock process: $(\Omega, A)=\left(\mathbb{R}^{\mathbb{Z}}, A^{\prime}(\mathbb{R})^{\mathbb{Z}}\right)$ with $\left.x_{t}: \omega_{\text {na }} \rightarrow[\omega]_{t_{1}}\right)$
We define the σ-field of shift-invariant events for $\left(X_{t}\right)$,
$I_{x}:=\left\{A \in A: \tau_{x}^{-1}(A)=A\right\}$. (con show this is σ-field; more useful descr. below.)
We say $\left(X_{t}\right)$ is ergodic lon (Ω, A, \mathbb{P})) if
(i) I_{X} is \mathbb{P}-trivial, that is $\forall A \in I_{X}, \mathbb{P}(A) \in\{0,1\}$. (ate A anus scows or it nome cess)
(ii) τ_{x} is measure-preserving, ie. $\forall A \in \mathcal{A}, \mathbb{P}\left(\tau^{-1}(A)\right)=\mathbb{P}(A)$.
 $X_{t}(\omega): \stackrel{(1)}{=} X_{0}\left(\mu^{t}(\omega)\right), \forall t \in \mathcal{Z}$, is strictly stationary; converaly every strictly $\underbrace{t \text { times }}_{t=0, \ldots}$ summary τ_{x} \&injechive stationary process has a 72) measans-p. Wand can be written as $(*)$.
\Rightarrow Erjodicity implies strict slaty, if τ_{x} is infective /hi i, eeo, the ark
Rematch 2: Intuition of Shift-invariance \& erjodicity.

- Shift-invaviance can be 'decoded' into a move intuitive statement. First

$$
\begin{aligned}
& \text { observe } \\
& A \in \mathcal{I} \Leftrightarrow \tau^{-1}(A)=A \stackrel{\text { dat }}{\Leftrightarrow}\{\omega \in \Omega: \tau(\omega) \in A\}=A \Leftrightarrow(\omega \in A \Leftrightarrow \tau(\omega) \in A) \\
& \Rightarrow \tau(A) \subseteq A \Rightarrow \forall n \in \mathbb{N} \tau^{n}(A) \subseteq A \quad \text { (by induction) }
\end{aligned}
$$

- Hence we see: $\omega \in A$ for $A \in I$ implies $\forall n \in \mathbb{N} \tau^{n}(\omega) \in A$.
- Thus if $A \in I$, we have $\forall n \in \mathbb{N}: \forall \omega \in A$,

$$
x_{n}(\omega)=x_{n-1}(\tau(\omega))=\ldots=x_{0}\left(\tau^{n}(\omega)\right) \in x_{0}(A):=\left\{x_{0}(\omega) \mid \omega \in A\right\}
$$

since $\tau^{n}(\omega) \in A$.
\Rightarrow If $\left(X_{t}\right)$ is evaluated at $a w \in A$, the values $X_{t}(\omega)$ never leave the set $X_{0}(A)$!
This is what we want to prevent under errodiuty: either such sets A never occur, or they already capture the woke set of values that trajectories $\left(x_{t}(\omega)\right)_{t \in \mathbb{Z}}$ can pan throcih. Ether may, it cannot happen that two drawn $t \in \mathbb{Z}_{\text {tape }}$ corine $\left(X_{t}(\omega)\right),\left(X_{t}\left(\omega^{\prime}\right)\right)$ evolve in sets completely separate from each other.
$>$ It can be shown that a strictly stationary\& ergodic process satisfies a law of large numbers:

$$
\frac{1}{T} \sum_{t=1}^{T} X_{t} \underset{T \rightarrow \infty}{\text { ass. }} \mathbb{E}\left[X_{1}\right] .
$$

Cf. WT1, Satz 11.4.
Often, such a LLN-property is macle the definition of ergolicity.
\rightarrow There are alternative definitions for erjodicity; a popular, stronger then the above, option is this sufficient condition:

Definition 3.33. Let (Ω, \mathscr{F}, P) be a probability space. Let $\left\{Y_{t}\right\}$
be a stationary sequence and let Z be the measure-preserving $\&$ injed. transformation $\frac{\text { inducing this sequence. }}{i e . Y_{E}(\omega) \equiv Y_{0}\left(Z^{t} w\right)}$. Then, $\left\{Y_{t}\right\}$ is ergodic if

Source: Davidson, p. 201 (221 in PDF) ardonly if:

$$
\lim _{T \rightarrow \infty} T^{-1} \sum_{t=1}^{T} P\left(F \cap Z^{t} G\right)=P(F) P(G)
$$

"Average asymptotic inclependence"
THY 1.4 (Measurable mappings). Let $\left(X_{E}\right)$ be a strictly shationam (resp. ergodic) process, and let $g:(\mathbb{R}, \dot{B}(\mathbb{R})) \rightarrow\left(\mathbb{R}, B(\mathbb{R})\right.$ be measurable. Then, $\left(g\left(x_{t}\right)\right)_{t}$ is strictly strīionay (resp. ergodic).

I Intuitively, erjodicity requires that our sequence will - in any catization wo a neyligibe'set always explore the whole possible sample space; conversely, Fo a noneriodic process, there one starting values whose vicinty is never left, with probability ore
Eypdicity, as we saw, may be reformulated as 'average asymptotic inde-
penclune
\triangle An even stronger notion than enodicity is mixing:
Iunitively, wising requires init sequence element in $\left(x_{t}\right)$ become independent of each other as Thy become farther apart
(For moot mixing concepts employed, erjodicity follows from mixing
(For he e cases t where it doesn't the calpnt is usually that the shift is not meaure-preservin)
(Erjodicity does not imply mixing, since it diess't rule ont that a sequence is perfectly pachichlid, from one point onwards (which clearly prevents as. independence?); CF. Example 13.15 on P. 202 (222 in PDF) in Davidson
$>$ There are many different concepts for mixing and they may differ even in the mate asatical objects to chick the definitions apply! Hoe is a lenon-comprehensive) summons:
DEF 1.5 (Mixing). Let $\left(\Omega, u_{t}, \mathbb{P}\right)$ be a p-space, $\left(X_{t}\right)_{t \in \mathbb{Z}}$ a process on it, T_{X} its shit operator ' $\left(F_{t}\right)_{t \in Z}$ He canonical filtration jeventhd by $\left(X_{t}\right)$, suppose
as the remote σ-field, or tail- σ-algebra.
Then, $\left(X_{t}\right)$ is called
(i) (shift-) mixicy if τ_{X} is measure-presoriy, infective and

$$
\forall A, B \in C, \quad \lim _{k \rightarrow \infty} P\left(\tau_{x}^{k}(A) \cap B\right)=P(A) \cdot P(B)
$$

iii) regular (-mixing) if \bar{F} is \mathbb{P}-trivial, ie. $\forall A \in \bar{F}, \mathbb{P}(A) \in\{0,1\}$; equikluatly,
$\forall B \in C A, \quad \sup _{A \in \mathcal{F}_{t}}|P(A \cap B)-P(A) P(B)| \rightarrow 0$ as $t \rightarrow-\infty$
(informally: reunote events one independent of events in A)
(iii) ξ-mixing (for $\xi \in\{\alpha, \phi\}$) mimbliving fix e $-\varphi<0$ if

$$
\begin{aligned}
& \xi_{m}=O\left(m^{-\varphi-\varepsilon}\right) \text { for once } \varepsilon>0 \text { and for } \\
& \text { name of } \left.\xi_{m}:=\sup _{t \in Z} \xi\left(\mathcal{F}_{-\infty, t}, \mathcal{F}_{t+m}, \infty\right) \text { with (for } \xi, \gamma t \leq A \sigma-a j_{j}\right) \\
& \phi(\xi, \lambda t)==\sup _{G \in \xi, H \in t}|P(G N H)-P(G) P(H)|, \phi(\xi, \lambda):==_{6, H \in \ldots}|P(H \mid G)-P(H)|
\end{aligned}
$$

Remarks:

- $I_{x} \subseteq \bar{F}$ provided τ_{x} is injective (All shift-invariant event are remote)
 an $1 \bar{F} \mathbb{P}$-trivia)

$$
\cdot \forall \xi, J t, \alpha(\xi, \not)) \leq \phi(\xi, H t) \text { so } \phi \text {-mix } \Rightarrow \alpha \text {-mixij } \Rightarrow \text { rejular-mixing }
$$

THM 1.6 (Mixing and measurable mappings). For $y: \mathbb{R}^{\tau+1} \rightarrow \mathbb{R}$ measmable, and $\left(x_{t}\right)$ being ξ - mixing $(\xi \in\{\alpha, \phi\})$ of size $-\varphi<0, \quad X_{t}:=g\left(x_{t}, \ldots, x_{t-\tau}\right)$ is also.
Remark: The theoran does not hold for $\tau=+\infty$!

Mixingle, mixing (α, ϕ, β),
Then 14.1 Davidson (m.able transf's preserve $\alpha-1 \phi$-umixing
Relation Erjodicity \& Mixing?
Aon: mixing procesi) is also an z^{1}-mixing ale
Qutline:

- Mixiry

Lintuition: asy. indepecdrce
L Filtrations, tail- $\sigma-A$, Kolmogorov $0-1$
$\left(\right.$ regularity-mixin: $\alpha\left(F_{-\infty}^{t}, F\right) \rightarrow 0$ as $t \rightarrow-\infty$
r-mixin \& staty sequ. is ergodic
$L_{\alpha-}, \phi$-uixing coeff:s for $\mathscr{g}, \vec{H} \subseteq F$
$L_{\alpha-1, \phi \text {-mixiy processes }}$
$L \Rightarrow$ ryulanity? Yes, I thich for α-mixing
(Mixing cunler m.able mappings
(Word of cantion: anixy may not survice infinite filtarig!
(Mixiy inequ.s

- Misiagales

Davidson: Ch.s 13k14
2. Modes of converencece for stochastic sequences
\rightarrow Let's explore the different notions of convergence for ranclom variables; the standard reference for his is WT1-script, sect. I. $5+7$
\rightarrow A more condensed exposition of the central concepts is in E703, II.1; this we simply recap here:
I. 1 Recap I: important notions of convergence from p-theory
$>$ Just in a reference (wo lengthy explantitions/intuitions), find here a summary of the definitions, properties and liskijes of the most important nations of convergence of random \rightarrow variables definition of here implicitly used concepts (like N.) or for general reference, cf. Script WT1
$>$ For a random vector $\underline{x}:(\Omega, \mathcal{A}) \rightarrow\left(\mathbb{R}^{d}, B\left(\mathbb{R}^{k}\right)\right), d \in \mathbb{N}$ and a seifuence of r.V.S $\left(\underline{X}_{n}\right)_{\text {MEN }}$, we 'Srenently use

Intention: $\underline{x}_{n}(\omega) \rightarrow \underline{X}(\omega)$ (datuminisicially) $\forall \omega \in \Omega \backslash N$ when $P(N)=0$ (x_{n} conviges for sure in all events w/ pos. probalo.)

$$
\Leftrightarrow x_{j, n} \xrightarrow{n-3} x_{j} \quad \forall j \in\{1, \ldots, d\}
$$

Detrition: there night be nontrivid ot there x_{n} does not converges but the 'deviation probability' Jades to 0 is $n \rightarrow \infty$ (it becomes increasingly improbable that \underline{x}_{n} and \geq to cot agree)

$$
\begin{aligned}
& \Leftrightarrow x_{j, n} \stackrel{x_{j}}{ } \not{ }_{j} \\
& . \Delta: P\left(\left|x_{\text {in }}-x_{i}\right|>\varepsilon\right) \leq P\left(| | x_{n}-x \mid>\varepsilon\right) \rightarrow 0 \text { an } n \rightarrow \infty
\end{aligned}
$$

 $x_{i n} \sim^{-} x_{i}$, can choose to catch; a subsequence (θ ($x_{i, n}$!) that conn. to x_{j} ass. (WT1, $k 5,8$) wog at $x_{i, n}, m_{k}$ be such subs fir
abs have equivalence to statements about sequences being Cauchy (a.s. / in p)

Wituition: the expected Euclidean distance Stun x_{n} and $\underset{x}{ }$ fades too

$$
\begin{aligned}
& \Leftrightarrow x_{j, n} \xrightarrow{\mathcal{R}^{p}} x_{j} \forall_{j} \\
& \Rightarrow \mathbb{E}\left(\underline{X}_{n}\right) \rightarrow \mathbb{E}(\underline{X}) \text { as } n \rightarrow \infty \quad\left(\text { but } n o t(!), ⿷^{\wedge}\right) \\
& \text { (Pf: for } d=1 \text { (note above) } 0 \leq \mathbb{E}\left(x_{n}\right)-\mathbb{E}(x)\left|=\left|\mathbb{E}\left(x_{n}-\underline{x}\right)\right| \leq \mathbb{E}\left(\left|x_{n}-\underline{\underline{x}}\right|\right) \rightarrow 0 \operatorname{mom}_{n \rightarrow \infty}\right.
\end{aligned}
$$

$[\stackrel{d}{\rightarrow}] x_{n} \xrightarrow{d} \times \stackrel{\text { if }}{\Leftrightarrow} \mathbb{E}\left(f\left(x_{n}\right)\right) \rightarrow \mathbb{E}(f(x))$ ns $n \rightarrow \infty$ for all $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ bounded \& continuous (rit: $x \mapsto x$ s not bounded!)
$\leftrightarrow\left(x_{i, n}, x_{j}, v_{j}\right)$! Intuition: the intyrals converge for some functions (not for all) - it can be shown that chis def is eve. to a more intuitive one which (ronglan) states that the distributions should become mare 'simisier' (cf. WT1, sect. 7, ip. Sk k 7.16, for this)
$\Leftrightarrow F_{\underline{x}_{n}}(t) \rightarrow F_{\underline{x}}(\underline{t})_{\text {as }} n \rightarrow \infty$ pointuise at all $t: F(\%$ contra att
$\Leftrightarrow \Psi_{X_{n}}(\underline{t}) \rightarrow \Psi_{\underline{x}}(\underline{t})$ pointwise as $n \rightarrow \infty$ for $\Psi_{\underline{x}}(\underline{t}) \equiv \mathbb{E}\left(\exp \left(i \cdot \underline{t}^{\prime} \underline{x}\right)\right)$ the char. function
$\Leftrightarrow \underset{\underset{\in \mathbb{R}}{\lambda^{\prime}} \underline{x}_{n}}{\leftrightarrow} \underline{\lambda}^{\prime} \underline{x} \quad \forall \underline{\lambda} \in \mathbb{R}^{d} \quad$ (Cramér-Wold-Derice)
\rightarrow And we can wise the following relations:

$>$ It is convenient to denote convergence in the analogue of the order notation known from deterministic sequences:
Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a convergent deterministic sequence (to $a \in \mathbb{R}$ (i.p. 0) or to $+\infty$) We define for a sequence of r.V.S, $\left(x_{n}\right)_{n \in \mathbb{N}}$, to be

- Bounded in p (probability): if $\forall \varepsilon>0, \exists M \in \mathbb{R}, N \in \mathbb{N}: \forall n 2 N \quad P\left(\left\|x_{n}\right\| \leq M\right) \geq 1-\varepsilon$ (As we consider higher sequence elements, p-man does not 'wander of to ∞ ' but stays in finite regions around O) this is actually equt. to $\left(P_{\underline{x}_{n}}\right)_{n \in \mathbb{N}}$ becigy tight!

$$
\int \cdot o_{p}\left(a_{n}\right): \text { if } \quad \frac{1}{a_{n}} \cdot \underline{x}_{n} \xrightarrow{p} \quad\left(\text { Note: } \underline{x}_{n} \xrightarrow[p]{0} \Leftrightarrow x_{n}=o_{p}(1)\right)
$$

- O O n_{n}): if $\frac{1}{a_{n}} \underline{x}_{n}$ is bounded in $p\left(\forall \varepsilon>03 M, N: P\left(U x_{n} \| \leq a_{n} \cdot M\right) \geq 1-\varepsilon \forall b_{n} \geq N\right)$ helpful heuristic notation: $\underline{x}_{n} \in O_{p}\left(a_{n}\right) \Leftrightarrow$ as $n \rightarrow \infty, \underline{x}_{n} \leq a_{n} \cdot \underline{x}$ for sememe ri.. \underline{x} slight abuse of $"="$ sign, since $x_{n}=O_{p}(1) \wedge y_{n}=o_{p}(1) \nRightarrow \quad x_{n}=y_{n}$!
- We have a number of rules: $\underline{x}_{n}=0_{p}\left(a_{n}\right) \Leftrightarrow a_{n}^{-4} x_{n}=0_{p}(1), \underline{x}_{n}=O_{p}\left(a_{n}\right) \Leftrightarrow x_{n}=a_{n} O_{p}(1)$

$$
\begin{aligned}
\text { Nahualy }-b_{n} \cdot O_{p}\left(a_{n}\right) & \left.=O_{p}\left(b_{n} a_{n}\right) \quad \text { (save for o op }(1)\right), \\
O_{p}(1) \in O_{p}(1)-O_{p}(1)+o_{p}(1) & =O_{p}(1), O_{p}(1)+O_{p}(1)=O_{p}(1), O_{p}(1)+O_{p}(1)=O_{p}(1), \\
-o_{p}(1) \cdot O_{p}(1) & =O_{p}(1), O_{p}(1) \cdot O_{p}(1)=O_{p}(1), o_{p}(1) \cdot O_{p}(1)=O_{p}(1)
\end{aligned}
$$

- For $a_{n} \rightarrow+\infty: O_{p}\left(a_{n}^{-\alpha-h}\right) \in O_{p}\left(a_{n}^{-\alpha}\right) \quad \forall h \geq 0, \forall \alpha \in \mathbb{R}$
led. $\left.O_{p}\left(n^{-1 / 2}\right) \in O_{p}\left(n^{-1 / 4}\right)\right)$
reminder: this memes $x_{n}=O_{p}\left(a_{n}^{-\alpha-h}\right) \Rightarrow x_{n}=\partial_{p}\left(a_{n}^{-\alpha}\right)$
Proof: $O_{p}\left(a_{n}^{-x-h}\right)=a_{n}^{-\alpha-h} \cdot O_{p}^{p}(1)=a_{n}^{-\alpha} \cdot a_{n}^{-h} O_{p}(1)$.

$$
\Rightarrow \underbrace{=} \Rightarrow O_{p}\left(a_{n}^{-\alpha}\right) \quad \begin{array}{ll}
& =\sigma_{0}(1) O_{p}(1) \\
& =o_{p}(1)
\end{array}
$$

We define, with help of these concepts, for O-p-concergent sequences the rate of convergence: lat
$\underline{\chi}_{n} \xrightarrow{+} \underline{0}$, specifically $\underline{x}_{n}=O_{p}\left(a_{n}^{-1}\right)$ for $a_{n} \rightarrow+\infty$
then: " a_{n} is rate of convergence of $\underline{x}_{n}{ }^{n} \stackrel{\text { def }}{\Rightarrow} \nexists\left(b_{n}\right)_{n}: b_{n} \rightarrow+\infty, \underline{x}_{n}=0_{p}\left(b_{n}^{-1}\right)$,
$b_{n} \rightarrow \infty$ foster than $\rightarrow b_{n} / a_{n} \rightarrow+\infty$
$a_{n} \rightarrow \infty$; hence can 'inflate' x_{n} by even wore than a_{n} and still jet p-boundedness.
) Almost directly tied to these notions are several 'classic' limit theorems for sequences of random variables that, unfortunately for stochastic processes, are often required to be independent:
II. 2 Recap II: limit theorems
$>$ As wight be apparent, the limit notions from II. 1 (as mild mut) limit notion) me particularly useful in approsimucting objects, here random variables that concierge to some well-bchaved limit bor rather aqumencos
\rightarrow The first clan of limit theoreans one "laws of luge numbers": under the right conditions, averages ($\left.1_{2} \Sigma_{n} ..\right)$ of ram down variables converge (in $2^{1} / P / a . s$.) to the (dater minisiti) expectation lit they don't have the same expectuthiore, the central fo. ks, averaged, yo to o)
The scour dan are "central limit theorems": 1ppropriatily scaled averages of centered rives converge (under conditions) in distribution to the standard normal distribution
\rightarrow There one many more limit tho orem, and wen the ones from the clans presented hire one not int exhaustive representation!
We just cod at the moot important the rems.
\rightarrow Laws of Carse numbers:

- for $d=1$ (for $d>1$, malogues hold - just use compmentwine!)
(standund)SLLN: $\left(x_{n}\right)_{n \text { ow }}$ iii. in $\mathcal{Z}^{2}(P) \Rightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i} \stackrel{\text { ass. }}{ } \mathbb{E}\left(x_{1}\right)$ $\mathcal{L}^{2}-L L N$ for $\neg \mathbb{1}$, , item.: : $\left(x_{n}\right)$ in $\mathcal{Z}^{2}(P)$ p.w. uncork with $V\left[\frac{1}{n_{i}} \Sigma_{i} x_{i}\right]=\frac{1}{h_{2}} \Sigma_{i} V\left(x_{x}\right]$

\mathcal{L}^{2}-UN for $\neg \mathbb{H}$, dent (Khintcchine): $\left(X_{w}\right)$ in $\not^{2}(\mathbb{P})$ pew. uncorrs med deut.

SLLN for pow. \mathbb{H}, dent (Etemadi): $\left(x_{n}\right)$ in $\mathcal{Z}^{2}(\boldsymbol{P})$ p.w. \mathbb{H} and rident. dirt: $\Rightarrow \frac{1}{n} \Sigma_{i} x_{i} \xrightarrow{\dot{d} \rightarrow \mathbb{E}\left(x_{n}\right)}$
transfer premise
$>$ Central limit theorems: first for $d=1$, for $d>1$ un Cramer-wow 1 -device!

Béry-Esseen (spec do. conc.): under stated conditions,
$\forall n \in \mathbb{N}, \sup _{t \in \mathbb{R}}\left|P\left(\sqrt{n} \frac{1 \varepsilon_{i} x_{i}-\mathbb{E} x_{i}}{\sqrt{V\left(x_{i}\right)}} \leq t\right)-\Phi(t)\right|<\frac{C}{\sqrt{n}} \cdot \frac{\mathbb{E}\left(\left|x_{i}-\mathbb{E} x_{i}\right|^{3}\right)}{\sqrt{\operatorname{Van}\left(x_{i}\right)^{3}}}$ for some $C \in \mathbb{R}$ (we know $C \in(0.4097,0.4748]$ but not moo)
Lyapunov: $\left(x_{n}\right) \Perp$ in $Z^{2}(\rho)$. For $\bar{x}_{n} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}, s_{n}^{2} \equiv \sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)$, if $\exists \delta>0$ (in practice often use $\delta=1$): $\frac{1}{S_{n}^{2+\sigma}} \cdot \sum_{i s n} \mathbb{E}\left(\left|x_{i}-\mathbb{E} x_{i}\right|^{2+\delta}\right) \rightarrow 0$ then $\frac{1}{S_{n}} \sum_{i=1}^{n}\left(x_{i}-\mathbb{E} x_{i}\right) \xrightarrow{l} \mathcal{N}(0,1) \quad{ }_{\text {Lyppuartent }}^{S_{n}} \leftarrow \sum_{i=1}^{n} \frac{\mathbb{E}\left(\mid x_{i}-\left[x| |^{3}\right)\right.}{S_{i=1}} \rightarrow 0$
Lindeberg-Feller: $\left(X_{n}\right) \Perp$ in $\mathcal{Z}^{2}(P)$. For \bar{x}_{n}, s_{n}^{2} as above, if $L_{n}(\varepsilon) \rightarrow 0$ $\forall \varepsilon>0$ for

$$
\operatorname{Ln}(\varepsilon) \equiv \frac{1}{s_{n}^{2}} \sum_{i \leq n} \mathbb{E}\left(\left(x_{i}-\mathbb{E} x_{i}\right)^{2} \cdot \mathbb{1}\left\{\left|x_{i}-\mathbb{E} x_{i}\right| \geq \varepsilon \cdot s_{n}^{2}\right\}\right)
$$

we have $\quad \frac{1}{\delta_{n}} \sum_{i=1}^{n}\left(x_{i}-\mathbb{E} x_{i}\right) \xrightarrow{d} \mathcal{N}(0,1)$
Notice: Lyapunov-cond \Rightarrow Lindekery-condition.
Not a CLT itself, but very practical:
Δ-method: For $a_{n}\left(\underline{x}_{n}-\mu\right) \xrightarrow{d} \underline{x}$ for some $\mu, \underline{x}, a_{n} \rightarrow \infty$ and for $g: \mathbb{R}^{d} \rightarrow \mathbb{R} \in \zeta^{n}(u(x))$ nim $\underline{\nabla} g(\mu) \neq \underline{0}$,

$$
a_{n}\left(g\left(\underline{x}_{n}\right)-g(\underline{\underline{\mu}})\right) \xrightarrow{d} \underline{\nabla} g(\underline{\mu})^{\prime} \underline{x}
$$

Proof: by 10 TA, sandwich Theorem, CMT and Stubbly's lemona; here we see we can álso use $k^{\text {th }}$ OTA under the right conditions!

$$
\begin{aligned}
& a_{n}\left(g\left(x_{n}\right)-g(\underline{\mu})\right)=a_{n} \underline{\nabla} g\left(\xi_{n}\right)^{\prime}\left(x_{n}-\mu\right) . \\
& \text { c Looks wind? Suppose } \left.\left(x_{n}\right) \text { ind. Then } E x_{i}=\mu \not\right)_{i}^{n} V\left[x_{i}\right]=\sigma^{2} \forall_{i} \text {, Then } \\
& \sum_{i=1}^{n}\left(x_{i}-\Sigma_{x_{i}}\right)=\sum_{i} x_{i}-n\left[x_{i}, \quad S_{n}=-\sqrt{\sum_{i} \sqrt{\left[x_{i}\right]}}=-\sqrt{n}-\sqrt{v\left(x_{i}\right]}\right. \\
& \Rightarrow \frac{\sum_{i}\left(x_{1}-E x_{i}\right)}{S_{n}}=\frac{n\left(\frac{1}{n} \sum_{i} x_{i}-E x_{i}\right)}{\sqrt{n} \sqrt{\sqrt{\left[x_{i}\right]}}}=\sqrt{n} \frac{\left(\frac{1}{n}\left[\sum_{i} x_{i}-E_{x_{i}}\right)\right.}{\sqrt{\sqrt{\left[x_{i}\right]}}}
\end{aligned}
$$

\Rightarrow It's ahunaps about dividing sums of deviations by (\sim) sums of standard deviations!

These results are useful as a benchmonh, Gout in severely limited scope for stochastic process; the next section covers limit results explicitly for Marion process
4. Limit results for Marhov-Processes
(This section is taken from RecMelh, II.5+6.)
Lect. II. 5 clarifies what Mashov-Proceses are \& some of their basic properties (sect. II. 6 builds on this \& presents important limit results for Marhov-frocesses Besides diving LLNS, $I I .6$ is actually mainly concerned with characterizing $\mathcal{L}\left(x_{t}\right)$ Ir $t \rightarrow \infty$; this is use pul in itself for fate since worst processes with which we will world can be represuthd as Markhor processes!
5. Markhor processes for Dynamic programming I: Definitions \& Foundation Z RA. MBMT +MBI2+MSCE before this
$>$ MP.S are an integral ingredient to stochastic dynamic programmer: in this section, we define hey burbling blocs then stitch how to construct a Macho process; finally, we show which objection from demonic profanmix sine vise to havition functions \& potentially a Mus hor process.
\rightarrow Most basic dypintion needed Jer Muhhor process in discrete time is that of transition zinctios, tet (z, Z) be meas space

We have that $\forall n \in N, Q^{n+1}(z, A) \equiv \int Q^{n}\left(z^{\prime}, A\right) Q\left(z, d z^{\prime}\right)$ is a trans. function \rightarrow And asctd with this transition function we define Markov operator of Q :

$$
\mathbb{E}\left(f(z) T: \int_{m}(z, z) \rightarrow \bar{R}(z): f(z) \mapsto(T F)(z) \equiv \int f\left(z^{\prime}\right) Q\left(z, d z^{\prime}\right)\right.
$$

$\sim z\left(z_{1}^{\prime}(z) \rightarrow\right.$ Adjoint of T

$$
T^{*}: \phi(z, Z) \rightarrow \mu(z, Z): v(A) \mapsto\left(T^{*} v\right)(A) \equiv \int Q(z, A) v(d z)
$$

Intuition: If is exp. value of f offer transition stated at z; and bo whole wish them, one can show the following properties (see SLP, ch 8.1 for proofs)
Them I.5.1 (Properties of Q's muthor operator and is adjoint') Let Q be a transition on (z, z) some meas. space; then:

$$
\left\{\begin{array}{l}
(i) T: B(z, Z) \rightarrow B(z, z) \\
\left(\text { (ii) } T^{*}: \not(z(z, z) \rightarrow \phi(z, Z)\right. \\
\text { nippur Stability" }
\end{array}\right.
$$

(iii) $\frac{\text { Linearim }}{T}$: For $f, g \in B(z, Z), \alpha, \beta \in \mathbb{R}$,

$$
\begin{aligned}
& T\left(\alpha \rho+\beta_{g}\right)=\alpha T f+\beta T g
\end{aligned}
$$

$$
\begin{aligned}
& T^{*}\left(\gamma_{\tau}+\left(1-n_{s}\right)=\gamma \tau^{*} \tau+(1-\gamma) T_{\beta}\right.
\end{aligned}
$$

(iv) Exchanjecubility: Jor $\langle i\rangle:, B(z, Z) \times \phi(z, i)) \rightarrow \mathbb{R}:(\mathcal{I}, i) \mid A \int_{z} f(z) V(d z)$ we con say

$$
\langle T f, v\rangle=\left\langle f, T^{*} v\right\rangle
$$

or more uncidly, $\forall f \in B(z, z), \forall v \in D(z, Z)$,

$$
\begin{aligned}
& \left.\int_{z}(T f)(z) V(d z)=\int_{z} f(z)\left({ }^{*}\right)\right)(d z) \\
& \Leftrightarrow \int_{z} \int_{z} f\left(z^{\prime}\right) Q\left(z, d z^{\prime}\right) v(d z)=\int_{z} f\left(z^{\prime}\right) \int_{z} Q\left(z, d z^{\prime}\right) v(d z)
\end{aligned}
$$

(v) Herateability the operators $T^{n}, T^{* n}$ corresponding to the TF $Q^{n}(z, A) \equiv \int Q^{n-1}\left(z^{\prime}, A\right) Q\left(z, d z^{\prime}\right)$ have the property that we can obtain them by staching the Q^{1} - operators; more generally: $T_{Q^{n}}=T_{Q}^{n}, T_{Q_{n}}^{*}=T_{Q^{* n}}^{* n}$ and

$$
T^{n+m}=T^{n} \circ T^{m}, T^{*(n+m)}=T^{* n} \circ T^{* m}
$$

(in sect 2 , will want to show under which conditions $\{T \text { Xn }\}_{\text {Len }}$ converges to a limiting means $v^{*} \in P(z, z)$)
Proof remark: most of these properties can be shown using the 'standard machinery' of integration theory:

1) Show it holds for an indicator function
2) using 1) and lineerity, show it holds for anvergence than. Ir expansions do is e
3) using 2) and Jot is foonicallen ion holds for an elewentany function integral def. of intural, show it holds for noises elan. functions and
4) using 3) and $y^{\circ} y^{+}-f^{-}$and linearity, show if holds for alb. mable Junction.
s If we can presume that (z, Z) has a structure (usually the case with (z, ρ) being metric space) we can define the following properties for $T_{1} T^{*}$:
Feller property: Q has $F P$ if $T_{Q}: C_{b}(z) \rightarrow C_{b}(z)$
Monotonicity: Q is monotone id $T_{Q}: N(z) \rightarrow N(z)$

$>$ Now wee can use Q to construct a measure on $\otimes_{n=1}^{\infty}(z, Z)$ which will give us the means to define the actual Markov procen!
First, we use Q to clefine a measure on $\otimes_{n=1}^{\infty}(z, Z)$;
1. Sip: consiche the finite-product space $\left(z^{\top}, Z^{Q T}\right) \equiv \otimes_{n=1}^{\top}\left(z^{n}, z^{n}\right)$. now define the set function War we 'short T $\mu^{\top}\left(z_{0}, \cdot\right): R^{\top} \rightarrow[0,1]: R \mapsto \int_{A_{1}} \ldots \int_{A_{T-4}} \int_{A_{T}} Q\left(z_{T-1}, d z_{T}\right) Q\left(z_{T-2}, d z_{T-4}\right)$ value z_{0}, but we could ibo

$$
\text { an the set of measurable rectangles in } Z^{\top} \quad \cdots Q\left(z_{0}, d z_{1}\right)
$$ start' in some $\mathbb{R}^{\top}:=\left\{X_{n=1}^{\top} A_{n} \mid A_{n} \in Z\right\}$. $v \in D(z, z)$

Then one can check that μ^{\top} is finite and σ-aclditive on R^{r} which is n-shale and joverats Z^{\top}, hence μ^{T} has a unique extension to ΣT (ec MBMT, S1.2.3, "Carathisdory")
2. Step: Now for $a l l$ le $T \in \mathbb{N}$, define the set of finite measervald rectangles $\overline{R^{T}}:=\left\{X_{n=1}^{\top} A_{n} X\left(X_{n=T+1}^{\infty} Z\right) \mid A_{n} \in Z\right\}$
and define the set function $\frac{A_{1}+1}{\mu T}: B \in \overline{R^{T}} \mapsto \int_{A A} \cdots \int_{A_{T}} Q\left(z_{T-1} d z_{T}\right) \ldots Q\left(z_{0}, d z_{z}\right)$. Again, $\overline{\mu^{\top}}$ is a finite pre-oneasin on $\overline{R^{r}}$ and hence has a unique extension to

$$
\begin{aligned}
& \sigma(\bar{R} T) \equiv\left\{B_{T} x\left(X_{n=T+1}^{\infty} z\right) \mid B_{T} \in Z^{T}\right\} \text { which we gain } \\
&=: \mathcal{F}_{T}
\end{aligned}
$$

Now \mathcal{F}_{T} is an incr. sequence of σ-a.s and hance $\mathcal{F}:=U_{T \in \mathbb{N}} \mathcal{F}_{T}$ is an algebra with the property $\sigma(\bar{\sigma})=Z^{\infty}$
3. Step: now define the set function $\bar{\mu}$ on \mathcal{F} by $\bar{\mu}, \mathcal{F} \rightarrow[0,1]: F \mapsto \overline{\mu^{\top}}(2, F)$ for $F \in \mathcal{F}_{T} \quad$ (tricky proof... again, one can check that his is a finite, σ-additive sect function on the algebra (thus, ring) \mathcal{F},and hence has the unique extension μ to $\sigma(F)=Z^{\top}$.
$\Rightarrow\left(X_{n=1}^{\infty} Z, \otimes_{n=1}^{\infty} Z, \mu\right)$ is a measure space where μ maps all Finite rectangles just as described in step 1.
We say the TFQ generate μ on $\left(X_{n=1}^{\infty} Z, \otimes_{n=1}^{\infty} Z\right)$
Def\&Prop. I. 5.2 (Markhor process) "Filiation"
A Markhor process is a stochastic process
sequence forA .s on Ω :
C SP on (Ω, A, P) is collection $\left((Z, Z),\left(\bar{V}_{t}\right)_{\text {GEN }},\left(X_{E}\right)_{t}\right)^{\mathcal{F}}$

$$
\xi_{1} \leq F_{2} \leq \ldots \leq A
$$

$\hat{i}_{\text {m, abl }}$ space
Ssequme of mapping

$$
x_{t}:\left(\Omega, F_{t}\right) \rightarrow(z, z)
$$

with the property $\forall t \in \mathbb{N} \forall n \in \mathbb{N}$

$$
\text { (MP) } \begin{aligned}
& P\left(\left(X_{t+1}, \ldots, X_{t+n}\right) \in C \mid X_{t}=z_{t}, \ldots, X_{1}=z_{1}\right) \\
& \quad=P\left(\left(X_{t+1}, \ldots, X_{t+n}\right) \in C \mid X_{t}=z_{t}\right) \quad \forall C \in Z^{\theta n} .
\end{aligned}
$$

Shorthand, we just mile $\left(X_{t}\right)_{t 21}$ instead of $\left.\left((Z, Z),\left(F_{t}\right)_{t}, X_{E}\right)_{s}\right)$ If the probabilities in (MP) are independent of $t_{\text {, }}$ we say (X_{t}) is "time homosencons".
For (z, Z) and a TFQ jiven, one can construct the canonical markov process as
Important: this $\left((z, Z),\left(F_{t}\right)_{t},\left(X_{t}\right)_{t}\right)=\left((z, Z),\left(\sigma\left(\overline{R^{\top}}\right)\right)_{T z 1},\left(\gamma_{t}\right)_{t z 1}\right)$ canonical markov process as sequence projection: $y_{t}:\left\{z_{i}\right]_{]_{i \in N} \Theta} \Theta z_{t}$ the process Marhavian! on $\left(X_{n=1}^{\infty} Z, \otimes_{n=1}^{\infty} Z, \mu\right)$ where μ generated by Q.

Remark: actually slightly moe involved proof needled, see SLP, Ch 8,3

- By construction μ^{\top} has the property that for amy \mathcal{Z}^{T} measurable function $F: Z^{\top} \rightarrow \overline{\mathbb{R}}$, we have

$$
\left.\begin{array}{rl}
\int_{z^{T}} F\left(z^{T}\right) \mu^{T}\left(z_{0}, d z^{T}\right) & =\int_{z^{T-1}} \int_{z} F\left(z^{T-1}, z_{T}^{T}\right) Q\left(z_{T-1}, d z_{T}^{\prime}\right) \mu^{T-1}\left(z_{1}, d z^{T-1}\right.
\end{array}\right)
$$

$>$ Lastly, we want to show that-building on the stochastic difference equation $z_{t+1}=g\left(z_{t}, w_{t}\right)$ Tor $\left(w_{t}\right)$ a stochastic proves tho cum construct a transition function for z_{t} and show that it is a Markov chain!
\rightarrow this is an intyral result, since in DP we will moot-ofter work directly with AR-proceses!
Connmitively, Q should be such that for zoe fixed, it jives
the transition probability $p_{0} z_{t+1} \in A$ by the law of w_{t} though giving che mas of the ω_{E} : $g_{y}\left(z_{t}, w_{e}\right) \in A$;
on j is indeed the case (however $M_{2}\left(z_{t}, w_{t}\right) \in A$; for meanmabitity of $Q(1,4)$ is more involved bes it uses monotone daws lemma here more of a practical exercise - for OP only result is
The II .5.3 (from stock. diff. equ. to Markov process)
Let (W, W, μ) be a p-space and let $\left(w_{t}\right)_{t \geq 0}$ be a stochashi process on $(w, N, \mu)^{\otimes N N}$, s.th. $w_{t}=\pi_{t}, t_{t} t$

Let $(z ; Z)$ be a mable space and define the process $\left(z_{t}\right)$ recursively by

$$
z_{t+1}=y\left(z_{t}, w_{t}\right) \quad \forall t \in N
$$

when $g:(Z \times W, Z \otimes W) \rightarrow(z, Z)$. Then, we can define the tramition Junction for $\left(z_{t}\right): \quad \forall z \in Z, \forall A \in Z$

$$
Q(z, A):=\mu\left(g_{z}^{-1}(A)\right) \text { \& sent to stiver } z_{z}=z, \text { prob to set } z
$$

where $g_{-i}^{-1}: Z \times Z \approx=W:(z, A) \mapsto\{w: g(z, w) \in A\}($ and $g *=f: Z \times z \rightharpoonup T: \ldots)$
And by the 5.2 we cen construct $\left(z_{i}\right)$ as a Markov process.
Sep, Proof: Tor the course of proof, define 222

$$
I: Z \neq Z \times W: A \mapsto\{(z, w): y(z, w) \in A\} \quad \text { b, DRPPI,5,2 }
$$

and $\forall C \in Z \times 10, C_{z}:=\{w \in W:(z, w) \in C\}$ the z-section of C. dy. of Q :
Then, $\forall z \forall A$,

$$
g_{z}^{-1}(A) \equiv(\tilde{L}(A))_{z}
$$

1) Q is well-defined: $g_{i, 1}^{-1} \cdot(\cdot)$ is w.d. by the above, so suffices To show that g^{-1} maps to w.
Not that by g being zow-z-mecasurable, I maps to $Z \otimes W$ and because sections w.am be obtained as limit h of compile intisuctions $(\Gamma(A))_{z} \in w$.
2) $\forall z \in Z, Q(z, \dot{)}$ is p-marne on $(z, \eta): Q(z, \phi)=0, Q(z, z)=1$ are obvious; remains σ-additivitit: Fix $\{A,\} \subseteq Z$ disjoint,

$$
\operatorname{Kim:~}_{\left(Z_{z}, U_{n} A_{n}\right) \equiv \mu\left(\left(I\left(U_{n} A_{n}\right)\right)_{z}\right)=\mu\left(\mathcal{H}_{n}\left(\Gamma\left(A_{n}\right)\right)_{z}\right) .}
$$

$$
=\Sigma_{n} \mu\left(\left[\Gamma\left(A_{n}\right)\right)_{2}\right)=\Sigma_{n} Q\left(Z_{1}, A_{n}\right)
$$

3) $\forall A \in Z, Q(1, A)$ is Z-measurable this is the fricley part, we will use the techmigne "principle of the good sets" basis of the monotone dhs lena (MBMT, SO.2.4) Define

$$
\xi:=\left\{C \in Z \not Z W: Z \mapsto \mu\left(C_{z}\right) \text { is a } Z \text {-measurable function }\right\}
$$

We now show:
(a) $R \subseteq Z \times w$ the system of meas. rectangles is in ε Pf: Let $R \in R$, then $\forall z$,

$$
\mu\left(R_{z}\right)=\mu\left((A \times B)_{z}^{F \omega}\right)=1_{A}(z) \cdot \mu(B)
$$

The set of inverse images to this, $\left\{A, A^{e}\right\}$ is in 7 bes A is, and hence $\sigma(\{A, A \subset\}) \subseteq Z$ which gives m.abality.
(b) $\bar{R} \subseteq Z \otimes W$ the system of finite unions of rectangles is in $そ$ PF.: Let $\bar{R}_{N}=U_{n+1}^{N} R_{n}$ for $R_{n} \in R$ and $N \in \mathbb{N}$. For $N=1$ is given by (a). Suppare in's given for $N-1$, then:

$$
\begin{aligned}
& \mu\left(\left(\bar{R}_{N}\right)_{z}\right)=\mu\left(U_{n=1}^{N}\left(R_{n}\right)_{z}\right)=\mu\left(U_{n=1}^{N-1}\left(R_{n}\right)_{z} \cup\left(R_{N}\right)_{z}\right) \\
& \left.=\mu\left(U_{n=1}^{N-1}\left(R_{n}\right)_{z}\right)+\mu\left(R_{N}\right)_{z}\right)-\mu(\underbrace{\left.U_{N}^{N-1}\right)_{z}}_{=U_{n=1}^{N-1}\left(R_{n}\right)_{z} \cap\left(R_{N} \cap R_{N}\right)}
\end{aligned}
$$

and N1 thee functions in the tum ane Z -mable by (a), hence do is the dur. Thus, by induction, $\bar{R}_{N} \in \xi$ +NeT So $\bar{R} \leqslant \bar{E}$.
(c) \bar{R} generates $z \otimes \omega$ by choice of $Z \otimes \omega$.
(d) ε is a δ-system
(i) $Z \times W \in E$ (trivial by $\mu(W)=1 \quad \forall z$ and constant is mande)
(ii) $C \in \mathcal{E} \Rightarrow C^{\varepsilon} \in \mathcal{E}$

$$
\mu\left(\left(c^{c}\right)_{z}\right)=\mu l\left(()_{z}^{c}\right)=1-\mu\left(C_{z}\right) \text { which is } Z \text {-m, able }
$$

(iii) Tor $\left\{D_{n}\right\} \leq\left\{\right.$ pw. disjoint is $U_{n} O_{n} \in \varepsilon$ $\mu\left(\left(\omega_{n} D_{n}\right)_{z}\right)=\mu\left(\omega_{n}\left(D_{n}\right)_{z}\right)=\sum_{n} \mu\left(\left(D_{n}\right)_{z}\right)$ which is $Z-m_{1}$.able which, loge ar (ie. ก-stable jenemier of $Z \otimes W$ in ε aud \mathcal{E} a δ-system) means, by MCL (MBMT SO.2.4), that
$Z \otimes W=\xi$ (notice $\varepsilon \subseteq Z \otimes W$ by construction) ie. $\forall A \in Z, Q(\cdot, A)$ is a Z-m .able function.
$\Rightarrow Q(\cdot \cdot)$ as defined is a transition function. We can construct a Markov chain with if (Lee D\&D I.5.2).
6. Markov processes for Dynamic programming II: Convergence of Markhor processes 2 Rd, MBMT, MBIZ, MSCE, WT1 $1-3,5-8,10.11$, I. 5 before this
\rightarrow As with stability analysis in deterministic DP setting, it is also for stochastic DP interesting to tall e about the Cong rum properties of the system that is implicitly defined by a SDP-setting
$>$ In this section, we will see the mot important theoreens when it comes to analyzing the convergence properties of a MP - which is especially interesting before the bach ground that the optimal transitions as implied by a SDA-problem can be viewed as a Markov process!
Fist, we will clarity some termindogy around Mawhov procence, then we will have a look at the collection of assumptions we will reed to invoke, finally we will list the results from SCPS9 (but not prove them) to see which kinds of results ane possible
Note: in this primer we focus on results for Markhor processes on an infinite state space - they will natmilly hold also for MP., on a finite (countable) state space (ic. for Markov Chains) but for MC.s one Can get results more easily - see DynMo-suript, section I. po a light introduction!
\rightarrow In general throughout this section let

$$
\equiv\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{l}, b_{l}\right]
$$

$-(S, \zeta): S \equiv[a, b] \subsetneq \mathbb{R}^{\prime}$ compact with $\zeta \equiv \mathbb{B}([a, b])$
\rightarrow this is clearly restrictive, eeg. it we want S to be the site space in a SDP -setting (see I. 4 besinniry), but note that there we can sometiones go from X to a compact set WLOG

- P:Sx\} $\rightarrow[0,1]$ a transition function on $(5,5)$ with associated operators T, T^{*}, p^{n} as the n-step-traus.function
- $\mu^{t}\left(\underline{s}_{0}, i\right)$ and $\mu\left(\underline{s}_{0}, \cdot\right)$ the measures on $(5,5)^{\otimes t}$ and $(5,5) \oplus \mathbb{N}$ generated by p
- $\left((s, y),\left(\sigma\left(\bar{R}^{t}\right)\right)_{t 21},\left(D_{t}\right)_{t 21}\right)$ the canonical Markhor $\left\{\left\{s_{i}\right\}_{i \geq 1}\right)$

\rightarrow in short: $\left(\underline{S}_{t}\right)_{t \geq 1}$ is a Manhood prowess with transition (typical element P on (s, s). from 5°
s Before starting, we clarify some concepts:
[Ergodic set] at $s \in S$. If for $E \in \zeta, P^{n}(\underline{s}, E)=1 \quad \forall u \in \mathbb{N}$ we call E consequent set of S; if E is consequent to every $S \in E$, then E is called invariant; We call E ergodic if $\nexists E^{\prime} C E: E^{\prime}$ is invariant ; We call $S \backslash\left(U_{e} E_{e}\right)$ transient (ergodic rets are the smallest sets that ane never left, once entered) a set hat is left \& union of at a lu erode tic sits \square N once enticed) w set hat is left \& never returned to w/ pos. prob.
[Invariant let $\mathcal{P}(S, \zeta)$ be the set of p-meannes on (S, ζ), then measure] $\rho \in \mathscr{X}(S, \xi)$ is called invariant w re the Madovprocen $\left(\right.$ (st) ter or wot P if $T^{*} \rho=\rho$ (ie ρ is fixed point of T^{*})
[Dominance Let S. τ be two (sinned) measwes. We say ρ for $(p$-thasusus $]$ dominates $\tau, s \geq \tau$, if bounded, meanumble,

$$
\langle f, \rho\rangle \geq\langle f, \tau\rangle \quad \forall f \in \bar{B}_{2}(s, 5)
$$ w. inecariny

where $\langle\cdot, \cdot\rangle: \mathcal{F}_{m}(S, \zeta) \times \sum(S, S) \rightarrow \overline{\mathbb{R}}:(f, \mu) \mapsto \int_{s} \mathcal{F} d \mu$
measunstu functions $\tau_{\text {signed manures }}$
on $(5,3)$ on $(5,5)$
It holds that \geq is a partial order on $P(5, \xi)$
[Strong conver- Let $\Sigma(5,5)$ be the signed measwes on $(5,5)$. gene of measures] A sequence $\left(S_{n}\right)_{n \in \mathbb{N}} \subseteq \sum(S, \xi)$ is said to converge shougley to some $S \in\left\{(S, \zeta), S_{n}^{s} \rightarrow \rho\right.$, if Ser SLP, P177ff.

$$
\text { (in } P D F)
$$

$$
\lim _{n \rightarrow \infty} \int f d \rho_{n}=\int f d \rho \quad \forall f \in \zeta_{b}(s, \xi)
$$

(this is weal h convergence) and the convergence is uniform over

$$
\left\{f \in C_{b}(5, \zeta):\|f\|_{\infty} \leq 1\right\} .
$$

It can be shown that on $\Sigma(5, \Sigma)$, the total variation distance

$$
d_{T v}(\cdot \cdot): \Sigma(S, \zeta)^{2} \rightarrow \mathbb{R}_{+}:(\mu, \rho) \mapsto 2 \sup _{A \in \zeta}|\mu(A)-\rho(A)|
$$

conc. in $d_{T v}$ is equt to unipmen convergence on $\}$ Cdirecty visible from definition: $d_{v}\left(\mu_{n}, \mu\right) \rightarrow 0$ $\Leftrightarrow \mu_{n}(A) \rightarrow \mu(A)$ $\forall A \in S$ minformun)

Lbs of sup meterises strong convergence and that stony convergence implies w. conv. (is obvious joe def.) Furthermore, $\left(\phi(5,5), C_{T V}\right)$ is a complete metric space (this can be used for CMT-agamints, will see later) and div induces the norm (and is induced by)
$\|\cdot\|_{T V}: \sum(S, \zeta) \rightarrow \mathbb{R}_{+}: \mu \mapsto \sup \sum_{n}\left|\mu\left(A_{m}\right)\right|$ $\left\{A_{n}\right\} \in \operatorname{Part}(5,3)$ $\frac{1 \text { cot of measurable }}{}$ disjoint partitions of 5
and $\left(\Sigma(5, \zeta),\|\cdot\|_{T V}\right)$ is a normed space.
\rightarrow Now we have all the terminology we need we will now look at the assumptions potentially needed - These ane somefinus not really intuitive-loohiry, but esp. the latter ones owe not too hard to check in practice
Ass. II. 6.1 (Assumptions on Markov processes to convergence)
finite measures on $(5,5)$
(A1) Doeblin's condition: $\exists \phi \in M_{f}(S, 5), N \in \mathbb{N}, \varepsilon>0$: $\forall A \in S, \forall \leq \in S$,

$$
\phi(A) \leq \varepsilon \Rightarrow P^{N}(\underline{\leq}, A) \leq 1-\varepsilon
$$

(we com always lind finite marne ϕ, an integer N and an ε S.K. a small ϕ measure of a set tells us that an N-step $\Leftrightarrow \geq N$ step) transition into this set is not complete certain, regardless of the slating point)
(A2) Condition M : $\exists \varepsilon>0, N \in \mathbb{N}: \forall A \in S, \forall ' \underline{S} \in S, P^{N}(s, A) \geq \varepsilon \cup P^{N}\left(s, A^{\top}\right) \geq \varepsilon$ (despite appearance, Cond.Mis not always sthisfied: imagine
$\left.P^{\prime \prime}(\underline{S}, A)=P^{\prime \prime}\left(\underline{s}, A^{c}\right)=0.5 \wedge \varepsilon=0.9\right)$
(this condition will be needed to establish that $T^{* N}$ is a contraction on $\left.\left(P(5,5), d_{i v}\right)\right)$
(AB) P has the Feller property: $T: C_{b}(S) \rightarrow C_{b}(S)$ of equivalent criteria for cheching the Feller property we have $(1) \Leftrightarrow(2) \Leftrightarrow(3)$ for:
(1) $T: \mathcal{F}_{m}(s, s) \rightarrow \mathcal{F}_{m}(s, s): f(\underline{s}) \mapsto(T f)(\underline{s}):=\int_{s} f\left(\underline{s}^{\prime}\right) P\left(\underline{s}, d s^{\prime}\right)$ maps $\tau_{b}(s)$ into $\zeta_{b}(s)$, sometimes wition $T\left(\zeta_{b}(s)\right) \subseteq \tau_{b}(s)$
(2) $\underline{s}_{n} \rightarrow \underline{5} \Rightarrow P\left(\underline{s}_{n}, \cdot\right) \stackrel{w}{\rightarrow} P(\underline{s}, \cdot)$ (direly from continuity of
(3) $v_{n} \xrightarrow{w} v \Rightarrow T^{*} v_{n} \xrightarrow{w} T^{*} v \quad$ (by and definition $I, 51$, live.)
(A4) P is monotone: $T\left(\mathcal{F}_{m, \geq}(5,5)\right) \subseteq \mathcal{F}_{m, \geq} \geq(5,5)$
\Leftrightarrow (2) for $\rho, \mu \in P(S, 5): \mu \geq \rho$ we have $T^{*} \mu \geq T^{*} \rho$
$\Leftrightarrow(3) \forall \underline{s}, \underline{s}^{\prime} \in S: \underline{s} \geq \underline{s}^{\prime}, P(\underline{s}, \cdot) \geq P(\underline{s}, \cdot) \quad \Leftrightarrow\langle T, \mu\rangle \geq\langle T f, \rho\rangle$
(AS) P has Mixiny-property: $\exists \leq \in S \equiv[\underline{a}, b], \varepsilon>0, N \in \mathbb{N}$:

$$
P^{N}(\underline{a},[\leq, \underline{b}]) \geq \varepsilon \wedge P^{N}(\underline{b},[\underline{a}, \underline{\leq}]) \geq \varepsilon
$$

(intuitively, mixing ensures that there is enough mobility in
the stochastic transitions, gravities uniqueness of epodic of)
\rightarrow Find here now the compiled list of results on the convergence of Markhor processes from SLP89, all who proof:
The II. 6.2 (Existence of invariant measures; convey. of avg.prot.s) Suppose P satisfies Ass II.6.1, (A1) (Doeblin's condition) for some (ϕ, N, ε); Then we have:
(a) S can be partitioned into a transient set and $1 \leq M \leq \phi(s) / \varepsilon$ ergodic rets
(b) $\forall v_{0} \in D(S, 5), \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{* n} v_{0}$ exists and is an invariant
meinere of T^{*} (ie. average probabilities converge strongly to some inv. meanie)
(c) There is one invar. m. Yer each ergodic set and every inv. m. of T^{*} con be written as convex combination of these

Thy II. 6.3 (Ex.\& uniqueness of inv. measure; conv. of avg. probes) Assume Ass. II. $6.1,(A 1)$ holds for some (ϕ, N, ε) and additionally, if $A: \phi(A)>0$ then $\forall \leq \exists n \in \mathbb{N}: P^{n}(\underline{s}, A)>0$ (this is close in spirit to irreducibility, see Dun Mo, I.4, D4.4); Then:
(a) \exists ! ergodic set $E \subseteq S$
(b) \exists ! inv. meas. to T^{*}, call it v^{*}
(c) $\lim _{N} \frac{1}{N} \sum_{n=0}^{N} T^{* n} v_{0}=v^{*}$ straggles $\forall v_{0} \in \not \subset(S, 5)$

The II. 6.4 (T* as contraction; strong conc. of measures)
Assume Ass. II.6.1, (A2) holds (Psatisfies condition M) for some $N \in \mathbb{N}, \varepsilon>0$; then,
$T^{* N}$ is a contraction on $(P(5,5), d T v)$ and $\forall v_{0} \in P(5,5)$, $v_{k} \equiv T^{* N k} v_{0}$ converges strongly $(\Rightarrow$ weakly) to the unique invariant measure v^{*}
The converse ($T^{* N}$ a contraction \Rightarrow Gond M for N, ε) holds abs. Note: this is a quite vice, result: we have both uniqueness of v^{*} and convergence (strongly!) to it, regardless of the starting measure) carnot say anything about a LLN at This singe
broadening $\rightarrow \frac{\text { Thu II. } 6.5}{T h 2.10}$ (Existence of inv. M. m. under weaker condition)
Assume Ass. II. $6.1,(A 3)$ (Phon Feller prop) holds; then for $S \subseteq \mathbb{R}^{\prime}$ compact (Thm.s 6.2-6.4 hold for arbitrary meas. Space $(S, 5)$)

$$
\exists v^{*} \in P(S, \zeta): T^{*} v^{*}=v^{*}
$$

From here on, $5 \subseteq \mathbb{R}^{2}$ compact.
broadivir \rightarrow Thm II.6.6 (Ex. \& uniqueness + weal convergence under weaker of the 6.4 Th2.12, P2005 LP conclitions) $S \subseteq \mathbb{R}^{\prime}$ compact anat

Assume Ass.II.6.1, (AB), (A4), (A5) (Phys Feller, is monotone and satisfies mixing) hold; Then:
(a) $\exists!v^{*} \in \not P(5,5): T^{*} v^{*}=v^{*}$ and
(b) $\forall v_{0} \in \not P(5,5), \quad T^{* n} v_{0} \xrightarrow{w} v^{*}$
 I weal convergence
U^{*} can be interpreted as the longrun unconditional distribution of s_{t} that P produces

Thu II. 6.7 (Law of large numbers for $\left(s_{t}\right)_{t 21}$) T14.7, p221 SLP $S \subseteq \mathbb{R}^{\prime}$ compact and
Assume Ass. II. 6.1, IAB) (Feller) holds and $\exists v^{*}$ invariant s. th. $\forall v_{0} \in P(5,5)$, $\lim _{N} \frac{1}{N} \sum_{n} T^{* v_{n}} v_{0}=v^{*}$ weakly (e.g. $(A 4)+(A 5)$ hold add. so that TII.6.6 hollis);
Then continuous function

$$
\lim _{T \rightarrow \infty} \frac{1}{\tau} \sum_{t=1}^{T} f\left(\gamma_{t}(s)\right)=\int f d v^{*} \quad \mu\left(s_{0}, \cdot\right)-a \cdot s . \quad \forall s_{0} \in S \quad \forall f \in \check{L}(s)
$$

or more commonly

$$
\lim _{T \rightarrow \infty} \frac{1}{r} \Sigma_{t=1}^{T} f\left(\underline{s}_{t}\right)=\mathbb{E}_{v^{*}}[f] \quad \text { d.s. }
$$

5. Limit results for general processes
> The first result we already encountered in section 1:
$T H M 5.0$ (Ergodic theorem). Consider $\left(X_{t}\right)$ Strictly stationary and ergodic
in $\mathcal{L}^{\wedge}(\mathbb{P})$. Then, in $\mathcal{L}^{1}(\mathbb{P})$. Then,

$$
\frac{1}{T} \sum_{t=1}^{T} X_{t} \underset{T \rightarrow \infty}{\text { ass. }} \mathbb{E}\left[X_{1}\right] .
$$

Proof: Cf. WT1, Satz 11.4. or Klenke "Probability theory", Ch 20.
\rightarrow This theorem is useful in conjunction with THM 1.4 : measurable transformations preserve strict stationaily \& erjodicity
The nest result is very useful, sine it is very general.
TM 5.1 (UN for weally stationary processes). Let $\left(x_{t}\right)_{t \in \mathbb{Z}}$ be weakly stationary, and define

$$
\mathbb{E}\left(x_{t}\right) \equiv \mu, \mathbb{E}\left[\left(x_{t}-\mu\right)\left(x_{t-j}-\mu\right)\right] \equiv \gamma_{j} .
$$

Provided we have $\sum_{j \geqslant 0}\left|\gamma_{j}\right|<+\infty$, it is actually, $\left|\gamma_{j}\right| \rightarrow 0$ sufft.!

$$
\frac{1}{T} \sum_{t=1}^{T} x_{t} \xrightarrow{\boldsymbol{Z}^{2}} \mu \quad\left(\text { and } \operatorname{Avar}\left(\frac{1}{T} \Sigma_{t} x_{t}\right):=\lim _{T \rightarrow \infty} \operatorname{Var}\left(-\sqrt{T} \frac{1}{T} \Sigma_{t} x_{t}\right)=\sum_{j \in \mathbb{Z}} f_{j}\right)
$$

Proof. We can show the result by verifying that

$$
\mathbb{E}\left[\left|\frac{1}{T} \Sigma_{t} x_{t}-\mu\right|^{2}\right] \rightarrow 0 \text { as } T \rightarrow \infty \text {. }
$$

To this end, compute

$$
\begin{aligned}
& \mathbb{E}\left[\left|\frac{1}{T} \sum_{t} x_{t}-\mu\right|^{2}\right]=\mathbb{E}\left[\left(\frac{1}{T} \sum_{t}\left(x_{t}-\mu\right)\right)^{2}\right]=\frac{1}{T^{2}} \mathbb{E}\left[\left(\sum_{t} x_{t}-\mu\right)\left(\Sigma_{t} x_{t}-\mu\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \overline{=} \frac{1}{T^{2}}\left(T \cdot \gamma_{0}+2 \sum_{j=1}^{T-1}(T-j) \gamma_{j}\right) . \\
& \text { Now observe: }
\end{aligned}
$$

$$
T \cdot \mathbb{E}\left[\left(\frac{1}{T} \Sigma_{t} X_{t}-\mu\right)^{2}\right]=\gamma_{0}+2 \sum_{j=1}^{T-1} \sum_{\leq 1}^{T-j} Y_{j}^{T} \leq 2 \sum_{j \geqslant 0}\left|\gamma_{j}\right|<+\infty \text { by previse. }
$$

$\forall T \in \mathbb{N}$.
Hence, $\mathbb{E}\left[\left(\frac{1}{F_{1}} x_{t}-\mu\right)^{2}\right]=O(T)$ and the cham follows.
Note: See Hamilton, p. 187 (101 in PDF) for explicit limit $T \cdot E\left[\left(\frac{1}{T} \Sigma_{E} x_{t}-\mu\right)^{2}\right] \rightarrow \sum_{j \in \mathbb{Z}} \gamma_{j}$.
\rightarrow Since mostly we operate with covaviance-stationary process this CLN is mosley sufficient for our purposes; it is yod to note, thanh, that there exist LIs even when we tale aw way weak stationarity
DEF\&THM 5.2 ($L^{1}-M_{i x i n g a l e s ~ \& ~ L L N) . ~ C o n s i l e r ~ a ~ p r o c e s ~}\left(x_{L}\right) \in \mathcal{L}^{1}(\mathbb{P})$ with $E\left(x_{t}\right)=0 \forall t$ and a filtration $\left(F_{t}\right)_{t}$ to which $\left(x_{t}\right)$ is adapted. We call $\left(x_{t}\right)$ an

$$
\mathbb{E}\left|\mathbb{E}\left(x_{t} \mid \mathcal{F}_{t-m}\right)\right| \leq c_{t} \xi_{m} .(\rightarrow 0 \text { as } m \rightarrow \infty)
$$

Now if
(Imbrivisly: the forcadst of x_{t} ming info in $t-m$
connery to 0 , he cuncemudit expect, in in $x^{\prime \prime}$ as $m \rightarrow a_{j}$ eg. a stable $\operatorname{AR}(\rho)$ started at the wonerjodic district., but with
zero mean is an $\left.Z^{\wedge}-M i x i n g a l.\right)$
(a) $\left(x_{t}\right)_{t \in \mathbb{N}_{0}}$ is uniformly int. able $\left(\lim _{\alpha \rightarrow \infty} \sup _{t \in \mathbb{N}_{0}} E\left(x_{i}|\mathbb{1}|\left|x_{t}\right| \geqslant \alpha\right\}\right)=0$ and
(b) $\exists\left(c_{t}\right)_{t \geqslant 1}$ for the above s.lh. $\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t \rightarrow 1}^{T} c_{t}<+\infty$

Then $\underset{T}{1} \sum_{t=1}^{T} x_{t}^{p} 0 .\left(E E x_{t}\right)$
Renal: For $x_{t} \equiv \sum_{j \geqslant 0} \psi_{j} \varepsilon_{t-j},\left(\varepsilon_{t}\right)$ ind in $\mathcal{L}^{r}(\mathbb{P}), r>2, \sum_{j \geqslant 0}\left|\psi_{j}\right|<+\infty$, we can
 and Mus

$$
\frac{1}{T} \sum_{t} x_{t} X_{t-h} \xrightarrow{e} \mathbb{E}\left(X_{t} x_{t-h}\right) .
$$

Cf. Hownilton, P. 192 (104 in PDF).
\rightarrow As usual, LLN.s ak e only one part of asymptotic analysis the other part we CLTs; again, there is quire a number of CLT.s \%or stich. processes, here we cover just a kw that are quin usijul.
TH 5.3 (CLT for MDS). Let $\left(x_{t}\right)$ be a martingale difference sequence wot some $\left(f_{t}\right)$. Suppose that
(a) $\left(x_{t}\right) \in \mathcal{Z}^{r}(\mathbb{P})$, for some $r>2$, and
(b) $\frac{1}{T} \sum_{t} \mathbb{E}\left(x_{t}^{2}\right) \rightarrow \sigma^{2}>0$ for some σ^{2}, and
(c) $\frac{1}{T} \sum_{t} x_{t}^{2} \xrightarrow{p} \sigma^{2}$.

Then, $-\sqrt{T} \cdot \frac{1}{T} \sum_{t=1}^{T} x_{t} \xrightarrow{d} N\left(0, \sigma^{2}\right)$.
Proof: White (1984): "Asymptotic theory for Econavetricians.", p. 130.
Remark: : This result generalizes to a vector-valued (x_{t}) MDS [by sharif that $\forall \underline{\lambda},\left(\lambda^{\top} \underline{x}_{t}\right)$ satisfies $(a)-(c)$ above, given vector equivalents to $(a)-(c)$ for $\left(x_{t}\right)$, and using the Cramer-wold-dwice (see above, sect. 2).

$$
\left.\sqrt{T} \hat{T} \sum_{t=1}^{T} \underline{x}_{t} \xrightarrow{d} \text { o(} \underline{0}, \sum_{\sim}\right), \sum_{\sim}:=\lim _{T \rightarrow \infty} \hat{T} \sum_{t=1}^{T} \mathbb{E} \underline{x}_{t} x_{t}^{\prime} \text {. }
$$

THM 5.4 (CLT for iid-dinven $M A(\infty))$. Let $\left(\varepsilon_{t}\right)$ iid $\in \mathcal{I}^{2}(\mathbb{P})$ and cet $\left(Y_{j}\right) \in \mathbb{R}^{N_{0}}$ s.th. $\sum_{j \geq 0}\left|\Psi_{j}\right|<+\infty$, and define $\forall t \in \mathbb{Z}$,
$x_{t}=\mu_{\Lambda_{\in \mathbb{R}}}+\sum_{j \geqslant 0} \psi_{j} \varepsilon_{t-j} . \quad\left(\Rightarrow\left(x_{t}\right)\right.$ is w. stat., com apply THM 5.1)
Then, $\sqrt{T}\left(\frac{1}{n} \Sigma_{t} x_{t}-\mu\right) \xrightarrow{\ell} \mathcal{N}\left(0, \Sigma_{j \in \mathbb{Z}} \gamma_{j}\right)$ where $\forall_{j} Y_{j}=\mathbb{E}\left(x_{t} x_{t-j}\right)$.
Proof: Anderson (1971) : "The spatistical Analysis of Time series." p. 429.
THM5.5 (Gordin's CLT Yor str. stationary\& ergodic proceses). Consider a procen $\left(X_{t}\right)_{\text {ise }}$ that is shricky stationcory and erjodic, and suppose it satisfies
((a) $\left(X_{t}\right) \in \mathcal{Z}^{2}(\mathbb{P})$
(b) $\mathbb{E}_{t-j}\left(x_{t}\right):=\mathbb{E}\left(x_{t} \mid\left(x_{t-h}\right)_{n 2 j}\right) \xrightarrow{x^{2}} 0$ as $j \rightarrow \infty$
(forccasts disappear in z^{2} as horizon incrassa.)
(c) $\sum_{j 20}\left\|r_{t, j}\right\|_{z^{2}}<+\infty \quad \forall t \in \mathbb{Z}$, where $r_{t, j}:=\left(\mathbb{E}_{t-j}-\mathbb{E}_{t-j-1}\right)\left(x_{t}\right)$
(forecust updates are z^{2}-summable.)
Then, we have:
(i) $\mathbb{E} X_{t}=0$
(ii) $\Sigma_{h \in \mathbb{Z}}\left|X_{h}\right|<+\infty$ for $X_{n}:=\mathbb{E}\left(x_{t} x_{t-n}\right)$ af. remarls 2
(iii) $\sqrt{T} \frac{1}{T} \sum_{t=1}^{T} x_{t} \xrightarrow{d} \mathcal{N}\left(0, \Sigma_{h \in \mathbb{Z}} V_{h}\right)$

Remark: usiny Cramér-Wold-device, it dirctly follows that we get corresponding $\overline{C L T}$ for vector-anlued procen $\left(x_{t}\right)$; (c) -(c) now reall:
(a) $\left(\underline{x}_{t}\right) \in \mathcal{Z}^{2}(\mathbb{P}) \quad\left(\underset{G}{m \in t} \forall t\left(\mathbb{E}\left\|\underline{x}_{t}\right\|^{2}\right)^{1 / 2}<+\infty\right)$,
(b) $\mathbb{E}_{t-j} \underline{x}_{t} \mathcal{Z}^{2} \underline{0}$ for $j \rightarrow \infty \quad \forall t \in \mathbb{Z}$,
(c) $\sum_{j \geq 0}\left\|r_{t, j}\right\|_{x^{2}}<+\infty$,
then $\sqrt{T} \cdot \frac{1}{T} \sum_{t=1}^{\top} \underline{x}_{t} \xrightarrow{d} \mathcal{N}\left(\underline{0}, \Sigma_{h \in \mathbb{Z}} \underline{\Gamma}_{\sim}\right),{\underset{\sim}{\sim}}_{h}:=\mathbb{E}\left(\underline{x}_{t} \underline{x}_{t-h}^{\top}\right)$.
THM 5.6 (CLT comporition).
(CF. Bodhucll \& Davis Prop. 6.3.9, Pp. 221 in PDF)

