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Notation

Scalars: x . Vectors: x . Matrices: x . Element i , j of matrix x : [x ]i ,j ∈ R. The converse, a
matrix composed of the elements of the doubly array N2 ⊃ I × J → R : (i , j) 7→ ai ,j , is
denoted [ai ,j ]i∈I, i∈J (with the understanding that the dimension is |I|× |J|). The Jacobian
of f : Rm → Rn with respect to x at the point y is denoted ∂f

∂x ′

∣∣
y
. Terms of order k ∈ R

in some variable are generically denoted O(k) without explicit mention of the variable;
this is typically some vector of exogenous (random) variables, ξ, so that we haveO(k) :=
O(∥ξ∥k).

Main Text

Relative to the model from the lecture we make two changes: (i) We consider the case
where the marginal product of labor in producing consumption goods may be decreasing;
(ii) we consider price stickiness à la Rotemberg – firms must pay a cost for changing their
price that which is quadratic in the size of the price adjustment. None of these changes
affects the generality of the results.

One straightforward way to introduce a (weakly) decreasing marginal product of labor
into our otherwise unaltered production side à la Rotemberg is to introduce “wholesale
firms”. The representative wholesale producer hires labor, nt , at nominal wage Wt and
produces ξa,tnαt , α ∈ (0, 1] units of wholesale goods. Wholesale goods, ywt , are sold to
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variety producers at nominal priceMt who turn them into varieties using a linear technol-
ogy. The FOC of wholesale producers is then:

Mt = ξ
−1
a,tWtα

−1n1−αt .

The program of a variety producer j is then:

max
(Pt(j))t≥0

E0
∑
t≥0
βt
Λt
Pt

[
Pt(j)yt(j)− (1− τ ℓξτ,t)Mtywt (j)− Pt

κ

2

(
Pt(j)

Pt−1(j)
− 1
)2
yt

]
with

yt(j) = y
w
t (j) ∧ yt(j) =

(
Pt(j)

Pt

)−ϵ
yt .

Notice that here the production subsidy shifter ξτ,t acts as an inverse cost-push shock!
The linearized Phillips-curve then is:

πt = βEtπt+1 +
ϵ− 1
κ
(ŵt + (1− α)n̂t − ξ̂a,t)−

1

κ
ξ̂τ,t .

Up to a rule determining it , the equilibrium is summarized by:

(n) ϕn̂t + σĉt − ξ̂c,t = ŵt

(b) ĉt = Et ĉt+1 −
1

σ
(it − Etπt+1 + lnβ + Et∆ξ̂c,t+1)

(PC) πt = βEtπt+1 +
ϵ− 1
κ
(ŵt + (1− α)n̂t − ξ̂a,t)−

1

κ
ξ̂τ,t

(y) ŷt = ξ̂a,t + αn̂t

(MC) ŷt = ĉt

1 Efficient Allocation

The efficient allocation obtains in the absence of price stickiness and cost-push-shocks
that drive a wedge between marginal costs and prices charged by monopolistically com-
petitive variety producers. That is, we consider the allocation arising underκ→ 0, ξτ ≡ 0.
The system then reads

(n)e ϕn̂et + σŷ
e
t − ξ̂c,t = ŵ et

(b)e ŷ et = Et ŷ et+1 −
1

σ
(r et + Et∆ξ̂c,t+1)

(PC)e ŵ et = ξ̂a,t − (1− α)n̂et
(y)e ŷ et = ξ̂a,t + αn̂

e
t
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where r et is defined as the real interest rate that makes (b)e hold. (Since prices are no
longer sticky monetary policy is neutral and inflation simply adjusts such that (b)e holds;
this is captured by simply introducing the efficient real rate, r et .)

Now substitute (PC)e into (n)e and solve for net :

n̂et = (1 + ϕ− α)−1(ξ̂a,t + ξ̂c,t − σŷ et ).

This we can plug into (y)e to find:

ŷ et =
1 + ϕ

1 + ϕ+ α(σ − 1) ξ̂a,t +
α

1 + ϕ+ α(σ − 1) ξ̂c,t .

This completely determines the efficient allocation as an explicit expression of exoge-
neous processes.

2 Allocation Gaps

In anticipation of the fact that the loss function will be expressed in deviations of the
market allocation from the efficient allocation, we can use our just-derived results to re-
write the market equilibrium conditions to be in terms of these deviations. Specifically,
define ỹt := ŷt − ŷ et as the output gap. The first step to finding the law of motion of the
gap variables is to rewrite the Phillips-curve. First, insert n̂t = α−1(ŷt − ξ̂a,t) into (n) to
find ŵt = (ϕα + σ)ŷt − ξ̂c,t −

ϕ
α ξ̂a,t . Inserting these expressions into the marginal cost

term in the Phillips-curve yields this term as

(ϕα + σ)ŷt − ξ̂c,t − (
ϕ
α + 1)ξ̂a,t +

1−α
α (ŷt − ξ̂a,t) =

1 + ϕ+ α(σ − 1)
α

ŷt − ξ̂c,t −
1 + ϕ

α
ξ̂a,t

=
1 + ϕ+ α(σ − 1)

α
ỹt ,

so that we receive the Phillips-curve as

πt = βEtπt+1 +
ϵ− 1
κ

1 + ϕ+ α(σ − 1)
α︸ ︷︷ ︸

=: θ

ỹt −
1

κ
ξ̂τ,t .

Finally, we can add and subtract ŷt , ŷt+1 in equation (b) to receive the canonical IS-equation.
This then yields the canonical representation of the NK-model:

(PC) πt = βEtπt+1 + θỹt − 1κ ξ̂τ,t
(IS) ỹt = Et ỹt+1 − 1σ (it − Etπt+1 + lnβ − r

e
t )

where r et is the real rate consistent with the efficient allocation, see above.
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Remark 1 (Alternative derivation of the Allocation Gap law of motion). The above repre-
sents the ‘textbook way’ of deriving the allocation gap law ofmotion. Formore complicated
systems this can become quite tedious. A derivation that always works is first subtracting
matching equations (i.e. subtract (n)e from (n), and so on) and then simplify as far as
possible from there on.

Doing this for the above model (multiply (PC)e by ϵ−1κ first) produces the system

(n)− (n)e ϕñt + σỹt = w̃t

(b)− (b)e ⇐⇒ (IS)

(PC)− (PC)e πt = βEtπt+1 +
ϵ− 1
κ
(w̃t + (1− α)ñt)−

1

κ
ξ̂τ,t

(y)− (y)e ỹt = αñt

and from here on, straightforward substitutions produce the familiar two-equation system
from above. ⋄

3 Loss Function

Since the non-stochastic steady state of the here-presented model is efficient, we may
perform a naive LQ approximation to the Ramsey program. We have already derived
the linear approximation to the implementability constraints, it only remains to derive the
quadratic approximation to the Ramsey-planner’s objective function which is the utility
function of the representative agent.

Said utility function is additively separable across time, so we concentrate on the sum-
mand for some t ≥ 0. We have:

ut = ξc,t
c1−σt

1− σ − χ
n1+ϕt
1 + ϕ

+ ξh,t
h1−νt
1− ν

= ξc,t

(
yt(1− κ2π

2
t )
)1−σ

1− σ − χ
( ytξa,t )

1+ϕ
α

1 + ϕ
+ ξh,t

h1−νss
1− ν (using market-clearing conditions).
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The relevant derivatives are:

∂ut/∂πt = ξc,t
(
yt(1− κ2π

2
t )
)−σ
(−κπtyt)

∂ut/∂πt |ss = 0

∂u2t /∂π
2
t = ξc,t(−σ)

(
yt(1− κ2π

2
t )
)−σ−1

(−κπtyt)2 − ξc,t
(
yt(1− κ2π

2
t )
)−σ
κyt

∂u2t /∂π
2
t |ss = −y1−σss κ

∂ut/∂yt = ξc,t
(
yt(1− κ2π

2
t )
)−σ
(1− κ2π

2
t )−

χ

α
( ytξa,t )

1+ϕ−α
α ξ−1a,t

∂ut/∂yt |ss = y−σss −
χ

α
(yss)

1+ϕ−α
α = 0 (use (n) in SS to see this.)

∂u2t /∂y
2
t = ξc,t(−σ)

(
yt(1− κ2π

2
t )
)−σ−1

(1− κ2π
2
t )
2 −
χ

α

1 + ϕ− α
α

( ytξa,t )
1+ϕ−α
α
−1ξ−2a,t

∂u2t /∂y
2
t |ss = −σy−σ−1ss −

χ

α
y
1+ϕ−α
α

ss
1 + ϕ− α
α

y−1ss

= −y−σ−1ss

1 + ϕ+ α(σ − 1)
α

∂u2t /∂yt∂ξc,t |ss = y−σss

∂u2t /∂yt∂ξa,t = −
χ

α

1 + ϕ− α
α

( ytξa,t )
1+ϕ−α
α
−1 yt
ξ2a,t
ξ−1a,t (−1)−

χ

α
( ytξa,t )

1+ϕ−α
α (−1)ξ−2a,t

∂u2t /∂yt∂ξa,t |ss = y−σss
1 + ϕ

α

This establishes that

ut − uss = −y1−σss

κ

2
π2t − y−σ−1ss

1 + ϕ+ α(σ − 1)
2α

y2ss ŷ
2
t

+ y−σss ξ̂c,tyss ŷt + y
−σ
ss

1 + ϕ

α
ξ̂a,tyss ŷt +O(3) + t.i.p.s.

=⇒ ut − uss ∝ −κπ2t −
1 + ϕ+ α(σ − 1)

α
ŷ2t + 2ξ̂c,t ŷt + 2

1 + ϕ

α
ξ̂a,t ŷt +O(3) + t.i.p.s.

Now observe that

− 1+ϕ+α(σ−1)α ŷ2t + 2ξ̂c,t ŷt + 2
1+ϕ
α ξ̂a,t ŷt = −

1+ϕ+α(σ−1)
α ŷt ·

(
ŷt − 2

(
α

1+ϕ+α(σ−1) ξ̂c,t +
1+ϕ

1+ϕ+α(σ−1) ξ̂a,t

))
= −1+ϕ+α(σ−1)α ŷt · (ŷt − 2ŷ et )

= −1+ϕ+α(σ−1)α

[
ŷt · (ŷt − 2ŷ et ) + (ŷ et )2 − (ŷ et )2

]
= −1+ϕ+α(σ−1)α ỹ2t + t.i.p.s.,

So that we have the loss function as

−( − |ss) ∝ +O(3) + t.i.p.s.,  := E0
∑
t≥0
βt
{
π2t +

θ
ϵ−1 ỹ

2
t

}
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4 LQ-approximated Ramsey Program

The monetary authority thus solves

min
(πt ,ỹt ,it)t≥0

 subject to

(PC) πt = βEtπt+1 + θỹt − 1κ ξ̂τ,t ,

(IS) ỹt = Et ỹt+1 − 1σ (it − Etπt+1 + lnβ − r
e
t ) .

Now since we ignore the ZLB-constraint on it , it is always possible to select it such that
(IS) holds. Thus, we can drop it as a control and (IS) as a constraint. Then, we write the
program in Lagrangian form (strong duality holds since this is a convex program) as

min
(πt ,ỹt)t≥0

max
(µt)t≥0

E0
∑
t≥0
βt
{
π2t +

θ
ϵ−1 ỹ

2
t + 2µt · (πt − βπt+1 − θỹt + 1κ ξ̂τ,t)

}
,

where we have directly omitted the Et -operator inside the summation because of the
law of iterated expectations. The first-order conditions are ∀t ≥ 0 and with the pre-
commitment µ−1 given:

(π) πt + µt − µt−1 = 0, (ỹ) ỹt = (ϵ− 1)µt , (µ) πt = βEtπt+1 + θỹt − 1κ ξ̂τ,t .

We may derive two canonical results:

1. Targeting Rule: Optimal monetary policy maintains a constant and negative rela-
tionship between the growth rate of the output gap and that of inflation:

πt +
∆ỹt
ϵ− 1 = 0.

In doing so, optimal monetary policy will keep the output gap on a downward tra-
jectory as long as inflation is above its unconstrained-optimal level of zero. This
makes sense when looking at (PC): as long as inflation is “too high”, we can de-
crease it by shifting down the output gap today, or the output gap tomorrow (just
iterate (PC) forward). Symmetrically, OMP will implement an upward trajectory of
the output gap if inflation is below target. At its core, the dynamics that this equation
encompasses illustrates how commitment works. Take the targeting rule in t + 1:
πt+1+µt+1−µt = 0. Ceteris paribus, lowering inflation in t+1will, besides affect-
ing  with slope πt+1, downward-violate the t + 1 Phillips curve, πt+1 − βπt+2 < 0
c.p.; this gets punished at the margin with rate µt+1; but it also upward-violates the
time t Phillips curve, πt − βπt+1 > 0 c.p.; and this means that inflation in t may be
lowered, which may be beneficial depending on where we start in terms of πt . The
overall effect of these dynamic linkages will become clearer once we have solved
for the process (µt)t that solves the FOC.
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2. Divine Coincidence: In the absence of cost-push shocks, ξ̂τ ≡ 0, optimal mone-
tary policy may achieve the first-best allocation, πt = ỹt = 0, ∀t almost surely, by
“tracking the efficient rate”, i.e. by setting it + lnβ = r et . This may, e.g., be imple-
mented by the rule it = − lnβ+ r et + φππt where φπ > 1 ensures that the first best
allocation is the unique market equilibrium (this is the Taylor Principle).

The FOC also admit a unique explicit solution. Before characterizing this solution, we
prove that there exists indeed a unique non-explosive solution. The requirement of non-
explosivity is a consequence of an optimality condition that we did not explicitly state: the
transversality condition.

As a first step, we obtain the law of motion of µt by inserting (π) and (ŷ) into (µ), thus
obtaining

µt−1 − µt = βEt{µt − µt+1}+ θ(ϵ− 1)µt − 1κ ξ̂τ,t .

Now defining µt := (µt , µt−1)⊤ allows to write the above law of motion as a vector-
valued first-order expectational difference equation:

β

(
1 −1
0 1

)
Etµt+1 =

(
1 + θ(ϵ− 1) −1

β 0

)
µt −

(
1
κ ξ̂τ,t
0

)
which is equivalent to

Etµt+1 = β−1
(
1 + θ(ϵ− 1) + β −1

β 0

)
︸ ︷︷ ︸

=: A

µt −

(
1
βκ ξ̂τ,t
0

)
.

The Eigenvalues e+,− ofA solve e2−e trA+detA = 0 ⇐⇒ e2−e ·(1+θ(ϵ−1)+β)+β =
0. The larger Eigenvalue is

e+ =
1
2

[
1 + θ(ϵ− 1) + β +

√
(1 + θ(ϵ− 1) + β)2 − 4β

]
> 1
2

[
2(1 + θ(ϵ− 1) + β)− 2

√
β
]
= 1+θ(ϵ−1)+β−

√
β.1

Thus, the largest Eigenvalue of β−1A is larger than β(1−
√
β+ θ(ϵ−1)+β) > β−1β = 1.

Therefore, the transition matrix of the law of motion of µ has an explosive Eigenvalue
which means that any solution that deviates from the canonical particular solution must
explode. Therefore, the stable solution is unique.

To find the stable solution, we guess that it is of an AR(1) form and apply the method
of undetermined coefficients. In doing so, we assume w.l.o.g. that ξτ,t is i.i.d.2 That is, we

1The first inequality is an application of: ∀x > y > 0,
√
x − y >

√
x −√y .

2This is w.l.o.g. because the dynamics of µ that we solve for capture the MA-coefficients of the general
solution. If we want to construct a solution for µ for a general covariance-stationary process ξτ , the
appropriate setup for the method of undetermined coefficients is to guess that the law of motion for µ
takes the form µt = aµt−1 + 1

κ

∑
s≥0 bsEt ξ̂τ,t+s , with a, (bs)∞s=0 being the coefficients to be determined.

Plugging intoµt−1+ζµt+βEtµt+1+ 1κξτ,t = 0 and isolating terms delivers the restrictions 1+ζa+βa2 =
0, b0 = −(ζ + aβ)−1, ∀s ≥ 1, bs = −β(ζ + aβ)−1bs−1. So, the coefficients a, b0 are the same as
when ξτ is i.i.d. (in particular, both are between 0 and 1), and the remaining coefficients are geometrically
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guess that the solution is of the form

µt = aµt−1 +
b
κ ξ̂τ,t

with a, b coefficients to be determined. We substitute this solution into the law of motion
for µt until we have only time t − 1 or exogenous variables left; defining ζ := −(1 + β +
θ(ϵ− 1)) we get:

µt−1 + ζµt + βEtµt+1 + 1κξτ,t =0
⇐⇒ µt−1 · [1 + ζa + βa2] + 1κξτ,t · [1 + ζb + βab] = 0

⇐= a ∈

{
−ζ ±

√
ζ2 − 4β
2β

}
, b = −(ζ + βa)−1.

Now since −ζ+
√
ζ2−4β
2β > 1, as seen above, it must be that the AR-coefficient we are

looking for is

0 < a =
−ζ −

√
ζ2 − 4β
2β

<
1 + β + θ(ϵ− 1)− (1− β + θ(ϵ− 1))

2β
= 1.3

Now since a ∈ (0, 1) we also have b = (1 + β(1 − a) + θ(ϵ − 1))−1 ∈ (0, 1). This finally
leads to

Theorem 1 (Optimal Monetary Policy). Given the stated environment, Ramsey-optimal
monetary policy under commitment is characterized by the following features

1. In the absence of a cost-push shock, OMP tracks the efficient rate by setting

it = − lnβ + r et

where
r et := σEt∆ŷ et+1 − Et∆ξ̂c,t+1.

That is, OMP (i) increases the nominal rate if the efficient output is expected to rise
(to prevent actual output today from rising as well, because of income-smoothing
effects) and OMP (ii) c.p. increases the nominal rate if the consumption taste pro-
cess is expected to fall (to prevent actual output from increasing today, because
of preference-driven intertemporal substitution; this is on top of the change implied
through the first difference of efficient output.)4

decreasing as s → ∞. A more explicit characterization requires detailing Etξτ,t+s by specifying a law of
motion for ξτ .

3Details: a > 0 is obvious; furthermore, it is ζ2 − 4β = 1 + 2β + β2 + 2θ(ϵ− 1) + 2βθ(ϵ− 1) + θ2(ϵ−
1)2 − 4β = 1−2β+β2 + 2θ(ϵ−1)(1−β)+4βθ(ϵ−1) + θ2(ϵ−1)2 = [1−β+θ(ϵ−1)]2+4βθ(ϵ−1).
Now since θ > 0, ϵ > 1, we have ζ2−4β > [1−β+ θ(ϵ−1)]2 which, by monotonicity of x 7→

√
x , proves

the second inequality.
4This point is quite nuanced: one would expect OMP to accommodate temporary changes in preferences,
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2. In response to a one-off cost-push shock, ξ̂τ,0 < 0, (ξ̂τ,t)t≥1 = 0, OMP allows the
on-impact output gap to be slightly negative, i.e. the elasticity of the output gap on
impact with respect to the shock is b/κ ∈ (0, 1/κ). Since the output gap drops
on impact, inflation rises on impact by b

κ(ϵ−1) . With passing time after the shock,
t ≥ 0, OMP geometrically increases the output gap back to zero, with coefficient
a ∈ (0, 1). This means that the first differences of the output gap are positive and
decreasing, meaning that inflation in t ≥ 1 is negative and mean-reverting. Thus,
optimal monetary policy under commitment achieves amilder inflation-output trade-
off than under discretion by promising to keep the output gap negative for some
time, thus decreasing inflation today not only by a negative output gap but also by a
negative expected inflation rate.

as here ξc . The fact that such increases in ξc directly affect the efficient rate and that OMP offsets this
intertemporal substitution pressure towards consumption tomorrow with an interest rate hike is reflective
of the fact that such an intertemporal substitution is impossible in the given economy. Since there is no
means to shift resources intertemporally, the optimal monetary policy undoes the desire to perform such
a shift. The only way ξc can actually impact the allocation obtained under OMP is by changing the efficient
level of output through its impact on the marginal rate of substitution between leisure and consumption.
An increase in ξc acts like a negative income effect on labor supply (by increasing the marginal utility of
consumption). And since shifting resources intratemporally between labor and consumption is possible,
OMP will reflect the ensuing shift in the marginal rate of substitution between consumption and leisure
in its chosen allocation and optimally increase the level of output by decreasing the nominal rate. (A
mean-reverting increase in ξc will produce a negative expected growth rate of efficient output.)
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