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I. Introduction
Many models and estimators in today’s time series econometrics rely on nonlinear (or even
non-quadratic) optimization problems. In some noteworthy and relevant exceptions, like
VAR-models, asymptotically valid inference can be derived from closed-form estimators
by applying generic laws of large numbers (LLNs) and central limit theorems (CLTs) for
dependent data (E.g. readily available in textbooks like Davidson, 1994; Brockwell and
Davis, 2009; Klenke, 2013). By far not all estimators admit such generic treatment, though.
The “Functional Approximation of Impulse Responses (FAIR)” estimator of VMA-models
proposed by Barnichon and Matthes (2018) is one example, relevant by its recent popularity
in the empirical macroeconomics literature (cf., e.g., Barnichon et al., 2021). In short,
FAIR proposes to approximate the vector moving average (VMA) representation of a Wold-
decomposable process by writing each element of the matrix-lag-polynomial as a sum over
finitely many basis functions. Then, the parameters governing shape and weighting of the
basis functions in each element of the matrix-lag-polynomial are estimated in a Bayesian
fashion in Barnichon and Matthes’s original approach. Crucially, while the authors mention
that FAIR “can be estimated using maximum likelihood” (Barnichon and Matthes, 2018, p.
9) the asymptotic properties of a such-constructed estimator are not discussed in their paper.

This paper aims to summarize the main results available on the asymptotic properties
of M-Estimators for serially dependent data. M-Estimation1 covers a very broad class of
estimators, namely those that can be written as the solution to an in-sample optimization-
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problem with an objective that is an average of some terms. Following his introduction
of Quasi-Maximum-Likelihood (QML) for i.i.d.-data (White, 1982), Halbert White and co-
authors dedicated several papers to exploring the asymptotic properties of related estimators
with dependent data (Domowitz and White, 1982; White and Domowitz, 1984; Wooldridge,
1986). The results of these efforts, White collected in his 1996 textbook “Estimation,
Inference and Specification Analysis”, while Wooldridge (1994) provides an overview in the
Handbook of Econometrics. This is the main body of work on which this note rests. After
examining the general results of this literature, I briefly outline how they may be applied
to establish consistency and asymptotic normality of a suitably defined QML-estimator for
the class of FAIR-models. It is important to remark here that the task of establishing these
properties for the FAIR-estimator on a general VMA-process is somewhat involved – we have
(a) an approximation (FAIR vs. VMA) and (b) a latent-variable problem to take care of.
I circumvent both issues essentially by assuming them away. This is meant as a first step
towards a more general analysis.

In the rest of this paper, I examine the population-level workings of QML (Section
II), the general results for consistency (Section III) and asymptotic normality (Section IV) of
M-Estimators, as well as a specialized result (Section V): the conditions for the general results
can be tremendously sharpened upon focussing on the framework of QML-Estimation, with a
Gaussian density, of a correctly specified model (up to second moments). Finally, in Section
VI, I apply these sharper results to the simplified FAIR model class.

Notation
As notation, I use the following convention (more specific notation is elaborated on the fly).
Scalars: 𝑥. Vectors: 𝒙. Matrices: 𝒙 . Element 𝑖, 𝑗 of matrix 𝒙 : [𝒙 ]𝑖, 𝑗 ∈ R. The converse,
a matrix composed of the elements of the doubly array N2 ⊃ 𝐼 × 𝐽 → R ∶ (𝑖, 𝑗) ↦ 𝑎𝑖, 𝑗 , is
denoted [𝑎𝑖, 𝑗]𝑖∈𝐼, 𝑖∈𝐽 (with the understanding that the dimension is ∣𝐼 ∣ × ∣𝐽∣). “vec 𝑿” denotes
vectorization of the matrix 𝑿 (the vector obtained from stacking all columns on top of one
another, going from left to right); ⊗ denotes either the Kronecker product of two matrices or
the product of two measures, depending on the context. 1{⋅} denotes the indicator function
(attains the value 1 whenever the logical condition within the parantheses is true, and attains
0 otherwise). “

p
Ð→” denotes convergence in probability for a sequence of random variables,

“ d
Ð→” denotes convergence in distribution.

II. Quasi-Maximum-Likelihood
Let us first turn to a general description of what Quasi-Maximum-Likelihood estimation
(QMLE) does on a population level. This will be helpful in two ways: (a) QMLE is widely
applied and has a natural population-level interpretation; and (b) many M-estimators can be

2



reformulated as a QMLE-estimator2. White (1996), Ch. 2, delivers a detailed exposition of
this subject, which I reproduce up to minor adjustments.

The fundamental inference problem as it pertains to QMLE is as follows: we observe
a sample of data, {𝒙𝑡}𝑇𝑡=1 =∶ 𝒙

𝑇 , 𝒙𝑡 ∈ R𝑘 , and want to learn about features of its distribution,
𝑃𝑇0 ∶= (𝒙𝑇).3 We make the following

Assumption 1 (Data-generating Process). The observations 𝒙𝑇 are realizations of the
stochastic process (𝒙𝑡)𝑡∈N on the complete probability space (

∏
𝑡≥1R

𝑘 , ⊗𝑡≥1 (R𝑘),P0).
Furthermore, for each 𝑇 ∈N, there exists a 𝜎-finite measure 𝜈𝑇 on (R𝑇𝑘 ,(R𝑇𝑘)), known to
the analyst and s.th. 𝑃𝑇0 Î 𝜈𝑇 with density 𝑔𝑇 . (This reflects knowledge of the support of 𝒙𝑇 .)

The standard approach is now to specify a set of approximand densities meant to capture
𝑔𝑇 , the unknown part of 𝑃𝑇0 . To judge the fit of this approximation, and select a specific ‘best’
approximand, a distance criterion is needed. This is where the intepretability of QMLE is
rooted: it judges the fit of a candidate density 𝑓 by the Kullback-Leibler-divergence. This
criterion is not formally a metric but possesses many desirable properties, one of which is its
information-theoretic interpretation.4 The general result here is

Definition & Proposition 1 (Kullback-Leibler-Divergence and Information Inequality). Let
(Ω,, 𝜇) be a measure space and let

(i) 𝑔 ∶ (Ω,) → (R≥0,(R≥0)) s.th. (a)
∫
Ω
𝑔 d𝜇 < +∞ and (b)

∫
𝑆
𝑔 log 𝑔 d𝜇 < +∞ for

𝑆 ∶= {𝜔 ∈ Ω ∶ 𝑔(𝜔) > 0}

(ii) 𝑓 ∶ (Ω,) → (R≥0,(R≥0)) s.th.
∫
𝑆
𝑔 log 𝑓 d𝜇 < +∞ (note the absence of ∣ ⋅ ∣: the

value log(0) ∶= −∞ is permitted!)

Then the Kullback-Leibler-Divergence of 𝑓 with respect to 𝑔 is defined as

𝐾𝐿(𝑔 ∶ 𝑓 ) ∶=

∫
𝑆

log[𝑔/ 𝑓 ] ⋅ 𝑔 d𝜇,

and we have the “Information Inequality”:∫
𝑆

(𝑔 − 𝑓 )d𝜇 ≥ 0 Ô⇒ 𝐾𝐿(𝑔 ∶ 𝑓 ) ≥ 0 ∧ (𝐾𝐿(𝑔 ∶ 𝑓 ) = 0 ⇐⇒ 𝑔 = 𝑓 , 𝜇-a.e. on S).

Note that the LHS is always true for probability densities 𝑔, 𝑓 .

2 By thinking of the summands of the objective as log-density terms; more explanations below.
3 (⋅) is the operator that associates with each random variable, 𝑋 ∶ (Ω,A,P0) → (Ω

′,A′), its “law”, i.e.
the unique measure P ○ 𝑋−1.

4 Put loosely, KL measures the information lost when using 𝑓 d𝜈𝑇 as a distribution for 𝒙𝑇 , rather than
𝑔𝑇 d𝜈𝑇 ; it does so by measuring the excess amount of bits needed, on average, to encode a value generated
by 𝑔𝑇 d𝜈𝑇 when using an encryption that is optimized for 𝑓 d𝜈𝑇 .
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Proof. Since
∫
𝑔 d𝜇 < +∞, take w.l.o.g.

∫
𝑔 d𝜇 ≤ 1 and observe that

1 ≥
∫
𝑆

𝑔 d𝜇 ≥
∫
𝑆

𝑓 d𝜇 =
∫
𝑆

𝑓 /𝑔 ⋅ 𝑔 d𝜇
Jensen
≥ exp(

∫
𝑆

log( 𝑓 /𝑔) ⋅ 𝑔 d𝜇)

Ô⇒ 0 ≥
∫
𝑆

log( 𝑓 /𝑔) ⋅ 𝑔 d𝜇 = −𝐾𝐿(𝑔 ∶ 𝑓 ).

For 𝐾𝐿(𝑔 ∶ 𝑓 ) = 0 ⇐⇒ 𝑔 = 𝑓 , 𝜇-a.e. on 𝑆, sufficiency is obvious. For necessity, assume w.l.o.g. 𝜇(𝑆) > 0
and suppose for contradiction that 𝜇({𝑔 ≠ 𝑓 } ∩ 𝑆) > 0. By 𝐾𝐿 = 0 it must be that 𝑆 ≡ 𝐹1 ⊎ 𝐹2 ⊎ 𝐹3, with
𝐹1 ∶= {𝑔 > 𝑓 }, 𝐹2 ∶= {𝑔 < 𝑓 }, 𝐹3 ∶= {𝑔 = 𝑓 }, with the first two nonempty.
Now:

0 ≤
∫
𝑆

(𝑔 − 𝑓 )d𝜇 =
∫
𝐹1

(𝑔 − 𝑓 )d𝜇 −
∫
𝐹2

( 𝑓 − 𝑔)d𝜇, and

∫
𝑆

log(𝑔/ 𝑓 )𝑔 d𝜇 =
∫
𝐹1

log(𝑔/ 𝑓 )𝑔 d𝜇 −
∫
𝐹2

log( 𝑓 /𝑔)𝑔 d𝜇.

Furthermore, by the Mean-Value-Theorem, ∀𝜔 ∈ 𝐹2, ∃𝛼 ∈ (1, 𝑓 (𝜔)/𝑔(𝜔)) ∶ log( 𝑓 /𝑔) = ( 𝑓 /𝑔 − 1) − ( 𝑓 /𝑔 −
1)2/(2𝛼2

) < ( 𝑓 /𝑔 − 1). Therefore, −
∫
𝐹2

log( 𝑓 /𝑔)𝑔 d𝜇 >
∫
𝐹2
(𝑔 − 𝑓 )d𝜇.

For𝜔 ∈ 𝐹1 we similarly get ∃𝛼 ∈ ( 𝑓 (𝜔)/𝑔(𝜔), 1) ∶ log( 𝑓 /𝑔) = ( 𝑓 /𝑔−1)−( 𝑓 /𝑔−1)2/(2𝛼2
) < ( 𝑓 /𝑔−1)

and therefore
∫
𝐹1

log(𝑔/ 𝑓 )𝑔 d𝜇 >
∫
𝐹1
(𝑔 − 𝑓 )d𝜇. Thus, ultimately:∫

𝑆

log(𝑔/ 𝑓 )𝑔 d𝜇 >
∫
𝐹1

(𝑔 − 𝑓 )d𝜇 +
∫
𝐹2

(𝑔 − 𝑓 )d𝜇 =
∫
𝑆

(𝑔 − 𝑓 )d𝜇 ≥ 0 ∧ 𝐾𝐿(𝑔 ∶ 𝑓 ) = 0 Ô⇒ ⊥ .

∎

In this KLD, we will plug 𝑔𝑇 , 𝑓 and take 𝜇 = 𝜈𝑇 . But first, we state the density-ratio-
decomposition of the population density 𝑔𝑇 – this serves as a population counterpart for the
familiar forecast-error-factorization in the sample-(quasi-)likelihood function.

Proposition 1 (Density Factorization). Given the process in A1, some 𝑇 ∈ N, and the true
law 𝑃𝑇0 Î 𝜈

𝑇 , it is possible to choose a version of the density, 𝑔𝑇 , s.th.

𝒙𝑇 ∈ 𝑆𝑇 ∶= {𝒙𝑇 ∶ 𝑔𝑇(𝒙𝑇) > 0} Ô⇒ 𝒙𝑇−1 ∈ 𝑆𝑇−1

(such 𝑔𝑇 are called “standard”) so that the following the following holds 𝑃𝑇0 -a.s.:

log 𝑔𝑇(𝒙𝑇) =
𝑇∑︁
𝑡=1

log 𝑔𝑡(𝒙𝑡), 𝑔𝑡(𝒙
𝑡) ∶=

𝑔𝑡(𝒙𝑡)

𝑔𝑡−1(𝒙𝑡−1)
.

(If 𝜈𝑇 ≡ ⊗𝑇
𝑡=1 𝜈𝑡 , 𝑔𝑡 is a conditional density.)

This decomposition has the significant advantage that we can define approximands
directly for the density ratio 𝑔𝑡 (Note that 𝑔𝑡 may still depend on𝑇 – for notational convenience,
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this is left implicit). This setup specializes very nicely to cases where 𝑔𝑡 ≡ 𝑔. Now we can
finally define our approximands:

Definition 2 (Parametric Stochastic Specification). Grant Assumption 1 and consider the
measure 𝑔𝑇 d𝜈𝑇 , 𝑇 ∈ N. A parametric stochastic specification for (𝑔𝑡) ∶= {𝑔𝑇 , 𝑇 ∈ N} is a
triangular array of functions ( 𝑓𝑡) = {( 𝑓𝑡)𝑇𝑡=1, 𝑇 ∈ N} where ∀𝑇 , 𝑓𝑡 ∶ R𝑡𝑘 × Θ → R≥0 with
Θ ⊆ R𝑝 and s.th. ∀𝜽 ∈ Θ, 𝑓𝑡(⋅, 𝜽) is measurable.

The basic idea here is that 𝑃𝑇𝜽 ∶ (R𝑇𝑘) ∋ 𝐵 ↦
∫
𝐵∩𝑆𝑇

∏𝑇
𝑡=1 𝑓𝑡(𝒙

𝑡 , 𝜽)d𝜈𝑇 is a probability
measure that approximates 𝑃𝑇0 well in the sense that 𝐾𝐿 is small. However, while 𝑃𝑇𝜽 is
indeed a well-defined measure, it need not be a probability measure. Even if it is, it need
then not be that 𝑓𝑡 is a conditional density, even if 𝑔𝑡 is. These facts are especially relevant
for cases where the approximands 𝑓𝑡 specify conditional distribution features of a sub-vector
of 𝒙𝑡 , given another sub-vector of it – in this case, 𝑓𝑡 evidently does not pin down a full
distribution of 𝒙𝑡 .
Beyond the previous requirements, the following regularity conditions are helpful.

Assumption 2 (Regularity of 𝑓𝑡). ( 𝑓𝑡) is s.th. ∀𝑡 ≤ 𝑇 ∈N,

(i) ∀𝜽 ∈ Θ, 𝑓𝑡(⋅, 𝜽) is measurable and
∫
𝑆𝑇

∏𝑇
𝑡=1 𝑓𝑡(𝒙

𝑡 , 𝜽)d𝜈𝑇 ≤ 1,5

(ii) 𝑓𝑡(𝒙𝑇 , ⋅) is 𝑃𝑇0 -a.s. continuous.

Now for the population-level program of QMLE: fix some 𝑇 ∈ N and ( 𝑓𝑡). Then
the “quasi-likelihood-function”6 𝜽 ↦

∏𝑇
𝑡=1 𝑓𝑡 =∶ 𝑓

𝑇 can be viewed as an approximation to
𝑔𝑇 =

∏𝑇
𝑡=1 𝑔𝑡 with adequacy measured by

𝐾𝐿(𝑔𝑇 ∶ 𝑓 𝑇(⋅, 𝜽)) =

∫
𝑆𝑇

log[𝑔𝑇/ 𝑓 𝑇]𝑔𝑇 d𝜈𝑇 , which is minimized by maximizing

𝑇 ⋅ 𝐿̄𝑇(𝜽) ∶=

∫
𝑆𝑇

log[ 𝑓 𝑇(𝒙𝑇 , 𝜽)]𝑔𝑇(𝒙𝑇)𝜈𝑇(d𝒙𝑇).

That is, given a class of approximands ( 𝑓𝑡), we can find the KL-best approximand by solving

max
𝜽
𝐿̄𝑇(𝜽) =

1
𝑇

𝑇∑︁
𝑡=1
E{log 𝑓𝑡(𝒙𝑡 , 𝜽)}. (II.1)

If ∃𝜽0 ∈ Θ ∶ 𝑓 𝑇(⋅, 𝜽0) = 𝑔𝑇 , 𝑃𝑇0 -a.s., then by the information inequality and A2 the above
program has the unique solution 𝜽0.

5 This qualification is not made by White (1996), but is important so that the information inequality may be
applied later.

6 Actually, this label is traditionally used for a sample context; White (1996) uses it to label the random
function given here.
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The link to the sample-definition of QMLE is now straightforward. Since we lack
knowledge of 𝑔𝑇 we cannot evaluate 𝐿̄𝑇(⋅). The QMLE-approach proceeds to use sample-
information and a LLN7 to elicit the 𝐿̄𝑇 -maximizer from the “sample quasi-likelihood”:

𝐿𝑇(𝜽) ∶=
1
𝑇

𝑇∑︁
𝑡=1

log 𝑓𝑡(𝒙𝑡 , 𝜽). (II.2)

The maxmizer (if existent and measurable) is called the QML-estimator, 𝜽̂ . That the QMLE
exists and is measurable is assured by our Assumptions 1 and 2, the requirementΘ be compact
and the following

Lemma 1 (Existence and Measurability of a Maximizer). Let (Ω,) be a measurable
space, Ω ⊆ R𝑝 compact and 𝑄 ∶ Ω × Θ → R s.th. ∀𝜽 ∈ Θ, 𝑄(⋅, 𝜽) is measurable and
∃𝐴 ∈ ∶ ∀𝜔 ∈ 𝐴, 𝑄(𝜔, ⋅) is continuous. Then, ∃ 𝜽̂ ∶ Ω→ Θ, /(Θ)-measurable and s.th.

∀𝜔 ∈ 𝐴, 𝑄(𝜔, 𝜽̂(𝜔)) = max
𝜽∈Θ

𝑄(𝜔, 𝜽).

III. Consistency
Armed with an understanding of how QMLE works at the population level, we can turn to
the asymptotic properties of general M-Estimators, the first step of which is to study general
results for consistency. Wooldridge (1994) gives a good synthesis of the literature, outlining
most of the herein presented results. M-Estimators are generally defined as

𝜽̂ ∶= arg min
𝜽∈Θ

1
𝑇

𝑇∑︁
𝑡=1

𝑞𝑡(𝒘𝑡 , 𝜽),

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶𝑄𝑇(𝜽)

(III.1)

where Θ ⊆ R𝑝 is the parameter space, 𝑞𝑡 ∶ 𝑡 × Θ → R is a function with 𝒘𝑡 ∈ 𝑡 ⊆ R𝑘𝑡

some random vector with the dimension growing with 𝑡 usually, 𝑘𝑡 →∞, as 𝑡 →∞.8

To develop a consistency notion, we require a target-parameter (or generally a sequence)
against which 𝜽̂ is supposed to be consistent. As for the case of QMLE, this consistency

7 Recall that for a sequence of random variables (𝑌𝑡)𝑡∈N a LLN holds if 1
𝑇

∑𝑇

𝑡=1(𝑌𝑡 −E𝑌𝑡)
p
Ð→ 0.

8 All necessary discussions on existence, measurability and uniqueness of such 𝜽̂ will be handled inside the
theorems.
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target is taken to be the minimizer of a suitable population counterpart of the objective (III.1):

(𝜽∗𝑇)𝑇∈N, where ∀𝑇 ∈N, 𝜽∗𝑇 = arg min
𝜽∈Θ

1
𝑇

𝑇∑︁
𝑡=1
E{𝑞𝑡(𝒘𝑡 , 𝜽)}.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶𝑄𝑇(𝜽)

(III.2)

The first theorem on consistency in the sense that 𝜽̂ − 𝜽∗𝑇
p
Ð→ 0 is from White (1996), Ch. 3:

Theorem 2 (Consistency with heterogeneous population-objectives). Consider 𝜽̂ as above
and suppose the following holds:

(A0) Θ ⊂ R𝑝 compact,

(A1) 𝒘𝑡 = 𝒙𝑡 , where (𝒙𝑡)𝑡∈N satisfies Assumption 1 and 𝑓𝑡 ≡ exp(−𝑞𝑡) satisfies Assumption
2 (this is the link between QMLE and M-Estimation),

(A2) ∀𝜽 ∈ Θ, ∀𝑡 ≤ 𝑇 ∈ N: (a) E𝑞𝑡(𝒙𝑡 , 𝜽) exists in R, (b) 𝜽 ↦ E𝑞𝑡(𝒙𝑡 , 𝜽) is continuous,9

(c) 𝜽 ↦ 𝑄𝑇(𝜽) has identifiably unique minimizers in the limit: (given Θ compact)
∀𝜀 > 0, lim sup𝑇→∞min𝜽∈(𝐵𝜀(𝜽∗𝑇))∁∩Θ(𝑄𝑇(𝜽) −𝑄𝑇(𝜽

∗
𝑇)) > 0,

(A3) 𝑞𝑡(⋅, ⋅) obeys the weak uniform law of large numbers (WULLN), i.e.

max
𝜽∈Θ

RRRRRRRRRRRR

1
𝑇

𝑇∑︁
𝑡=1

𝑞𝑡(𝒘𝑡 , 𝜽) −
1
𝑇

𝑇∑︁
𝑡=1
E{𝑞𝑡(𝒘𝑡 , 𝜽)}

RRRRRRRRRRRR

p
Ð→ 0.

Then, there exists a measurable minimizer 𝜽̂ ∶ 𝜽̂ − 𝜽∗𝑇
p
Ð→ 0.

As reassuring as the availability of such a general theorem is, in many practical
applications a simpler result (see Wooldridge, 1994) can be used, the (quite short) proof
of which gives a good deal of insight into the workings of these consistency results. The
theorem presupposes that there exists not only a sequence of targets (𝜽∗𝑇), but a well-defined
limit-function with associated minimizer:

∃𝜽∗ = arg min
𝜽∈Θ

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1
E{𝑞𝑡(𝒘𝑡 , 𝜽)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶𝑄(𝜽)

(III.3)

which is, e.g., satisfied if (𝑞𝑡(𝒘𝑡 , 𝜽)) is stationary with a unique minimizer (more below).

Theorem 3 (Consistency with limit population-objective). Consider 𝜽̂ as above and suppose
Theorem 2, (A0)&(A1) hold. Suppose further:

9 This is guaranteed by (A1).
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(A2)’ (a) 𝑄 ∶ Θ → R defined above exists, (b) 𝑄(⋅) has the identifiably unique minimizer 𝜽∗,
i.e. ∀𝜀 > 0, min𝜽∈(𝐵𝜀(𝜽∗𝑇))∁∩Θ𝑄(𝜽) > 𝑄(𝜽

∗),

(A3)’ 𝑞𝑡(⋅, ⋅) obeys the WULLN, i.e. max𝜽∈Θ ∣𝑄𝑇(𝜽) −𝑄(𝜽)∣
p
Ð→ 0.

Then, there exists a measurable minimizer 𝜽̂
p
Ð→ 𝜽∗.

Proof. Existence and measurability of 𝜽̂ follow from Lemma 1; uniquness is not needed for consistency, so the
notation “= arg min” is left as abuse of notation. It is required to show ∀𝜀 > 0, lim𝑇→∞P (∥𝜽̂ − 𝜽∗∥ > 𝜀) = 0.
Fix 𝜀 > 0 and note that by (A2)’-(b), a 𝛿 > 0 exists, s.th. ∥𝜽̂ − 𝜽∗∥ > 𝜀 Ô⇒ ∣𝑄(𝜽̂) −𝑄(𝜽∗)∣ > 𝛿, whence it
follows P (∥𝜽̂ − 𝜽∗∥ > 𝜀) ≤ P(∣𝑄(𝜽̂) −𝑄(𝜽∗)∣ > 𝛿). So it is sufficient to show 𝑄(𝜽̂)

p
Ð→ 𝑄(𝜽∗). To this end,

one can make the estimations

0 ≤ 𝑄(𝜽̂) −𝑄(𝜽∗) = 𝑄(𝜽̂) −𝑄𝑇(𝜽̂) +𝑄𝑇(𝜽̂) −𝑄(𝜽
∗
)

≤ 𝑄(𝜽̂) −𝑄𝑇(𝜽̂) +𝑄𝑇(𝜽
∗
) −𝑄(𝜽∗) by 𝜽∗ = arg min

≤ 2 max
𝜽∈Θ
∣𝑄𝑇(𝜽) −𝑄(𝜽)∣

p
Ð→ 0.

∎

The key enabling assumption in both theorems is the WULLN. Wooldridge (1994)
presents two results on how to establish a WULLN, one for a time-heterogeneous setup as
above, and a more specialized ‘homogeneous’ result (which will be sufficient for our purposes
later):

Lemma 2 (Homogeneous WULLN). Let

(i) (𝒘𝑡)𝑡∈N be a strictly stationary and ergodic10 process on (∞,()⊗∞),  ⊆ R𝑘

(ii) Θ ⊆ R𝑝 be compact

(iii) 𝑞 ∶ ×Θ→ R be s.th. 𝑞(⋅, 𝜽) measurable ∀𝜽 ∈ Θ, and 𝑞(𝒘𝑡 , ⋅) a.s. continuous

(iv) ∃𝑏 ∶ → R measurable and s.th. E𝑏 < +∞ and ∣𝑞(𝒘𝑡 , 𝜽)∣ ≤ 𝑏(𝒘𝑡) a.s. ∀𝑡,∀𝜽

Then, max𝜽∈Θ ∣ 1𝑇
∑𝑇

𝑡=1 (𝑞(𝒘𝑡 , 𝜽) −E{𝑞(𝒘𝑡 , 𝜽)})∣
p
Ð→ 0.

Proof. By (i) and (iii), the process (𝑞(𝒘𝑡 , 𝜽))𝑡∈N is strictly stationary and ergodic for any 𝜽 , hence we have a
pointwise LLN by Birkhoff’s ergodic theorem (e.g. Klenke, 2013, Theorem 20.14). Furthermore, conditions
(ii), (iii) and (iv) are sufficient for 𝜽 ↦ 1

𝑇

∑𝑇

𝑡=1 𝑞(𝒘𝑡 , 𝜽) to be stochastically equicontinous (SEQ).11 SEQ
follows here in three steps:

10 Weakly stationary would also suffice, given absolute summability of the autocovariances of the ensuing
𝑞(𝒘𝑡 , 𝜽).

11 A sequence of random functions (𝑄𝑇)𝑇∈N, 𝑄𝑇 ∶ Ω × Θ → R is SEQ if: ∀𝜀 > 0∃𝛿 > 0 ∶ lim sup𝑇→∞P(𝑤(𝑄𝑇 , 𝛿) ≥ 𝜀) < 𝜀,
where 𝑤(𝑄𝑇 , 𝛿) ∶= sup𝜽∈Θ sup𝝑∈𝐵𝛿(𝜽)∩Θ ∣𝑄𝑇(𝜽) −𝑄𝑇(𝝑)∣ is the “modulus of continuity”.
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1) 𝑤(𝑄𝑇 , 𝛿)
a.s.
Ð→ 0 as 𝛿 → 0: pick some 𝜔̄ ∈  ∶= {𝜔 ∈ ∞

∶ 𝑄𝑇(𝜔, ⋅) is continuous} and note that
P() = 1 by (iii); now since Θ is compact, 𝜽 ↦ 𝑄𝑇(𝜔̄, 𝜽) is uniformly continuous; thus, choosing some
𝜂 > 0, this ensures ∃𝛿 > 0 ∶ ∀𝜽 ,𝝑 ∈ Θ, ∥𝜽 − 𝝑∥ < 𝛿 Ô⇒ ∣𝑄𝑇(𝜽) −𝑄𝑇(𝝑)∣ < 𝜂.

2) By (iv), 𝑤(𝑄𝑇 , 𝛿) ≤ 2 1
𝑇

∑𝑇

𝑡=1 𝑏(𝒘𝑡) and by dominated convergence, E{𝑤(𝑄𝑇 , 𝛿)} → 0 as 𝛿 → 0.

3) Apply Markov’s inequality to conclude ∃𝛿 > 0 ∶ P(𝑤(𝑄𝑇 , 𝛿) ≥ 𝜀) < 𝜀 as 𝑇 →∞ for any 𝜀 > 0.

These are all the conditions needed to apply Theorem 21.9 by Davidson (1994). ∎

IV. Normality

For providing distributional approximations for the estimator 𝜽̂ , results on asymptotic
normality are the usual option. While White (1996) provides results for the fully time-
heterogeneous case (𝜽∗𝑇 ↛ 𝜽∗) in Ch. 6.1, I concentrate on Wooldridge’s (1994) exposition
which relies on the existence of the time-invariant population program (III.3).

Wooldridge’s main result exploits, as in the cross-section-case, the mean-value
decomposition of the FOC to the (differentiable) program (III.1). Thus, it relies on a CLT
for the score vector (the derivative of 𝑞𝑡(𝒘𝑡 , 𝜽) for 𝜽); sufficient conditions for this CLT are
given in the next section.

Theorem 4 (Asymptotic Normality of M-Estimators). Grant the assumptions (A0)–(A3)’ of
Theorem 3 and suppose additionally that

(A4) (a) 𝜽∗ ∈ intΘ, (b) (𝜽 ↦ 𝑞𝑡(⋅, 𝜽)) ∈ 2(intΘ) a.s. ∀𝑡 ∈N; define the score and Hessian
(summand)

𝒔𝑡(𝒘𝑡 , 𝜽) ∶=
𝜕𝑞𝑡(𝒘𝑡 , 𝜽)

𝜕𝜽
, 𝒉 𝑡(𝒘𝑡 , 𝜽) ∶=

𝜕2𝑞𝑡(𝒘𝑡 , 𝜽)

𝜕𝜽𝜕𝜽⊺
.

(A5) (a) (𝒉 𝑡(𝒘𝑡 , 𝜽))𝑡∈N satisfies the WULLN onΘwith 𝑨 ∶= lim𝑇→∞
1
𝑇

∑𝑇
𝑡=1E{𝒉 𝑡(𝒘𝑡 , 𝜽

∗)},
(b) (𝒔𝑡(𝒘𝑡 , 𝜽∗))𝑡∈N satisfies a CLT, i.e.:

√
𝑇

1
𝑇

𝑇∑︁
𝑡=1

𝒔𝑡(𝒘𝑡 , 𝜽
∗)

d
Ð→ (0,𝚵),

𝚵 ∶= lim
𝑇→∞

Var
⎛

⎝

√
𝑇

1
𝑇

𝑇∑︁
𝑡=1

𝒔𝑡(𝒘𝑡 , 𝜽
∗)
⎞

⎠
>p.d. 0

Then,
√
𝑇(𝜽̂ − 𝜽∗)

d
Ð→ (0, 𝑨−1𝚵𝑨−1).
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Proof. Because of (A4) and 𝜽̂
p
Ð→ 𝜽∗, 𝜽̂ solves 1

𝑇

∑𝑇

𝑡=1 𝒔𝑡(𝒘𝑡 , 𝜽̂) = 0, with probability approaching 1.12 Using
the Mean-Value-Theorem, we may write for some 𝜽̃ ∈ (𝜽̂ , 𝜽∗),

1
𝑇

𝑇∑︁
𝑡=1

𝒔𝑡(𝒘𝑡 , 𝜽
∗
) +

⎛

⎝

1
𝑇

𝑇∑︁
𝑡=1

𝒉 𝑡(𝒘𝑡 , 𝜽̃)
⎞

⎠

(𝜽̂ − 𝜽∗) = 0

⇐⇒

√

𝑇
⎛

⎝

1
𝑇

𝑇∑︁
𝑡=1

𝒉 𝑡(𝒘𝑡 , 𝜽̃)
⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Will be invertible with probability approaching 1

(𝜽̂ − 𝜽∗) =
√

𝑇
1
𝑇

𝑇∑︁
𝑡=1

𝒔𝑡(𝒘𝑡 , 𝜽
∗
)

⇐⇒

√

𝑇(𝜽̂ − 𝜽∗) =
⎛

⎝

1
𝑇

𝑇∑︁
𝑡=1

𝒉 𝑡(𝒘𝑡 , 𝜽̃)
⎞

⎠

−1
√

𝑇
1
𝑇

𝑇∑︁
𝑡=1

𝒔𝑡(𝒘𝑡 , 𝜽
∗
).

Finally, using Slutsky’s lemma and the WULLN in combination with the stochastic sandwich theorem delivers
the result. ∎

If such an asymptotic normality result holds in a given application, consistent variance
estimation of Avar(𝜽̂) = 𝑨−1𝚵𝑨−1 may be achieved by suitable plug-in estimators. By the
conditions from the theorem, 𝑨 = plim𝑇→∞

1
𝑇

∑𝑇
𝑡=1 𝒉 𝑡(𝒘𝑡 , 𝜽̂), while consistent estimation of

𝚵 is highly case-dependent. E.g. for a weakly stationary score (with finite 4th moments)
the usual HAC-machinery can be applied to estimate 𝚵 = 𝚪0 +

∑
ℎ∈N(𝚪 ℎ + 𝚪

⊺
ℎ
), 𝚪 ℎ ∶=

E{𝒔𝑡+ℎ(𝒘𝑡+ℎ, 𝜽
∗)𝒔𝑡(𝒘𝑡 , 𝜽

∗)⊺}.

V.  -QMLE with Correctly Specified Moments
As usual in the theoretic time series literature, primitive conditions for strong theorems are
obtained only in exchange for being more specific about the environment. The previous results
are no exception. However, in a well-cited13 contribution, Bollerslev and Wooldridge (1992)
manage to sharpen the above results quite a bit, by considering the practically relevant use-
case of QMLE-estimation, with a Gaussian density, of dynamic models under the provision
that the first and second conditional moments be correctly specified.

The environment can be sketched as follows. Let (𝒚𝑡)𝑡∈N, 𝒚𝑡 ∈ R𝜅1 and (𝒛𝑡)𝑡∈N, 𝒛𝑡 ∈ R𝜅2

be stochastic processes (outcome and regressor, respectively) and define some conditioning
vector 𝒙𝑡 ⊆ (𝒛⊺𝑡 , 𝒚⊺𝑡−1, 𝒛

⊺
𝑡−1, ..., 𝒚

⊺
1 , 𝒛
⊺
1)
⊺ and 𝒘𝑡 ∶= (𝒚

⊺
𝑡 , 𝒙
⊺
𝑡 )
⊺ ∈ R𝑘𝑡 . Suppose ∃!𝜽0 ∈ Θ ⊆ R𝑝

compact s.th.

∀𝑡 ∈N, E{𝒚𝑡 ∣ 𝒙𝑡} ≡ 𝝁𝑡(𝒙𝑡 , 𝜽0), Var{𝒚𝑡 ∣ 𝒙𝑡} ≡ 𝛀 𝑡(𝒙𝑡 , 𝜽0).

12 The statement “with probability approaching 1” is used for streamlining. It should rigorously be interchanged with the subsequence
theorem (𝑥𝑛

p
Ð→ 𝑥 ⇐⇒ ∃𝑥𝑛𝑘

a.s.
Ð→ 𝑥). That is, whenever “w.p.a.1” appears, we implicitly take a subsequence which satisfies the

claim on an almost-sure event.
13 4,329 citations on Google Scholar (Jan 10, 2022).
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The relevant estimator is taken to be the Quasi Maximum-Likelihood-estimator with Gaussian
density ( -QMLE),

𝜽̂ ∶= arg max
𝜽∈Θ

1
𝑇

𝑇∑︁
𝑡=1

log 𝑓𝑡(𝒘𝑡 , 𝜽), (V.1)

log 𝑓𝑡(𝒘𝑡 , 𝜽) ∶= −
1
2
⋅ [𝜅1 log(2𝜋) + log det𝛀 𝑡(𝒙𝑡 , 𝜽)

+(𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽))
⊺𝛀 𝑡(𝒙𝑡 , 𝜽)

−1(𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽))] .

Then Bollerslev and Wooldridge (1992) proceed to show:

Proposition 5. If 𝛀 𝑡(𝒙𝑡 , 𝜽) >p.d. 0, ∀𝜽 ∈ Θ, then 𝜽0 is the identifiably unique maximizer of
𝜽 ↦ E{log 𝑓𝑡(𝒘𝑡 , 𝜽)}, ∀𝑡 ∈N.

Proof. Using the intelligent zero 𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽) = 𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽0) + 𝝁𝑡(𝒙𝑡 , 𝜽0) − 𝝁𝑡(𝒙𝑡 , 𝜽) and commutativity
inside the tr-operator, we get

2 ⋅E{log 𝑓𝑡(𝒘𝑡 , 𝜽)} = − log det𝛀 𝑡(𝒙𝑡 , 𝜽) − tr [𝛀 𝑡(𝒙𝑡 , 𝜽)
−1𝛀 𝑡(𝒙𝑡 , 𝜽0)]

− (𝝁𝑡(𝒙𝑡 , 𝜽0) − 𝝁𝑡(𝒙𝑡 , 𝜽))
⊺𝛀 𝑡(𝒙𝑡 , 𝜽)

−1
(𝝁𝑡(𝒙𝑡 , 𝜽0) − 𝝁𝑡(𝒙𝑡 , 𝜽))

=∶ (𝝁𝑡(𝒙𝑡 , 𝜽),𝛀 𝑡(𝒙𝑡 , 𝜽)),

and we see (𝝁𝑡(𝒙𝑡 , 𝜽0),𝑯) > (𝒎,𝑯), ∀𝑯 >p.d. 0 , ∀𝒎 ≠ 𝝁𝑡(𝒙𝑡 , 𝜽0). We can also show
(𝝁𝑡(𝒙𝑡 , 𝜽0),𝛀 𝑡(𝒙𝑡 , 𝜽0)) > (𝝁𝑡(𝒙𝑡 , 𝜽0),𝑯), ∀𝑯 ≠ 𝛀 𝑡(𝒙𝑡 , 𝜽0) ∶ 𝑯 >p.d. 0 . This is achieved by

log det 𝝁𝑡(𝒙𝑡 , 𝜽0) + tr 𝑰 < log det 𝑯 + tr 𝑯−1𝛀 𝑡(𝒙𝑡 , 𝜽0)

⇐⇒ log det 𝑯−1𝛀 𝑡(𝒙𝑡 , 𝜽0) < tr [𝑯−1𝛀 𝑡(𝒙𝑡 , 𝜽0) − 𝑰 ] ,

which holds for all positive definite matrices (cf. Magnus and Neudecker, 1988, Theorem 27 & following
corollaries). The identifiability follows from continuity and compactness of Θ. ∎

This directly implies that 𝜽0 = arg max𝜽∈Θ 1
𝑇

∑𝑇
𝑡=1E{log 𝑓𝑡(𝒘𝑡 , 𝜽)}, ∀𝑇 ∈ N, and by

the appropriate assumptions on  ((𝒚𝑡 , 𝒛𝑡)𝑡∈N), Theorem 2 ensures that 𝜽̂
p
Ð→ 𝜽0. This leaves

essentially only the WULLN to the specific application.
We can also make substantial progress when it comes to asymptotic normality. To this

end, grant the appropriate differentiability assumptions to 𝝁𝑡 , 𝛀 𝑡 and observe that

𝒔𝑡(𝒘𝑡 , 𝜽) =
𝜕

𝜕𝜽
(𝑝×1)

log 𝑓𝑡(𝒘𝑡 , 𝜽) defining 𝒖𝑡(𝒙𝑡 , 𝜽) ∶= 𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽),

=
𝜕𝝁𝑡(𝒙𝑡 , 𝜽)

⊺

𝜕𝜽
𝛀 𝑡(𝒙𝑡 , 𝜽)

−1𝒖𝑡(𝒙𝑡 , 𝜽) −
1
2
𝜕(vec(𝛀 𝑡(𝒙𝑡 , 𝜽)))

⊺

𝜕𝜽
(𝛀 𝑡(𝒙𝑡 , 𝜽)

−1
⊗𝛀 𝑡(𝒙𝑡 , 𝜽)

−1
)
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⋅ vec [𝒖𝑡(𝒙𝑡 , 𝜽)𝒖𝑡(𝒙𝑡 , 𝜽)
⊺
−𝛀 𝑡(𝒙𝑡 , 𝜽)] . (V.2)

(A full derivation is provided in the Appendix.) From this we can see thatE{𝒔𝑡(𝒘𝑡 , 𝜽0) ∣ 𝒙𝑡} =

0. Therefore, provided we have a condition that Bollerslev and Wooldridge (1992) refer to as
“dynamic completeness”

𝜎 (𝒔𝜏(𝒘𝑡 , 𝜽0), 𝜏 ∈ {1, ..., 𝑡 − 1})
𝒔𝑡(⋅,𝜽0) m’able

⊆ 𝜎 ((𝒚⊺𝜏 , 𝒙
⊺
𝜏)
⊺, 𝜏 ∈ {1, ..., 𝑡 − 1}) ⊆ 𝜎(𝒙𝑡)

(⇐Ô 𝒙𝑡 = (𝒛
⊺
𝑡 , 𝒚
⊺
𝑡−1, 𝒛

⊺
𝑡−1, ..., 𝒚

⊺
1 , 𝒛
⊺
1)
⊺, e.g.)

the law of iterated expectations14 and the above nullity result ensure that (𝒔𝑡(𝒘𝑡 , 𝜽0))𝑡∈N is
a Martingale Difference Sequence (MDS) with respect to any filtration adapted to it. This
means we can, once the appropriate side conditions are established, use an MDS-CLT (see,
e.g., White, 2014, p. 130f.) to establish (A5)-(b) in Theorem 4.

VI. Application to a Simple FAIR-Model
Finally, we can apply the above results to a specific class of models and estimation procedures:
the “Functional Approximation of Impulse Responses (FAIR)” estimator of VMA-models
proposed by Barnichon and Matthes (2018). In fact, all derivations in this section apply
generally to VMA-models with finitely many parameters, since I do not explicitly exploit
the functional form of the mapping from deep parameters, 𝜽0, to MA-coefficients. That
notwithstanding, the results given here are severely limited in scope by two rather restrictive
assumptions that make the framework ‘simple’. The results should therefore be taken as a
first step towards deriving asymptotics for the FAIR-estimator in a (more) general setting.
Overall, FAIR-estimation of a VMA-model entails two main complications:

(1) Approximation problem: If (𝒚𝑡) ∼ VMA(∞) as is often implied by linearized DSGE-
models, (𝒚𝑡)

𝑎
∼ FAIR(𝑁, 𝐻) entails an approximation error due to 𝑁, 𝐻 < +∞;

asymptotics should posit 𝑁𝑇 , 𝐻𝑇 →∞, as 𝑇 →∞.

(2) Latent variable problem: the innovations (𝜺𝑡) are typically not directly observable;
direct VMA-estimation would rely on the fundamentality of (𝜺𝑡) to approximate it with
in-sample forecast errors by initializing a recursion with {𝜺𝑡}0

𝑡=−𝐻+1 = 0.

For reasons of scope, I ignore these two complications by making two very strong
assumptions:

(1) (𝒚𝑡) ∼ FAIR(𝑁, 𝐻), 𝑁, 𝐻 ∈ N0 where the basis function family is left implicit as some
mapping R𝑝 ⊃ Θ → R𝑘2(𝐻+1) ∶ 𝜽 ↦ (𝚿 ℎ(𝜽))ℎ∈{0,...,𝐻}, with 𝜽0 as the true, i.e. data-

14 I.e. E{E{𝑋 ∣} ∣} = E{𝑋 ∣} for 𝜎-fields  ⊆  (cf. Klenke, 2013, Theorem 8.14).
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generating, parameter:

𝒚𝑡 = 𝚿0(𝜽0)𝜺𝑡 +
𝐻∑︁
ℎ=1

𝚿 ℎ(𝜽0)𝜺𝑡−ℎ, 𝑡 ∈N

(2) 𝜺𝑡

⎧⎪⎪
⎨
⎪⎪⎩

= 0 a.s.∀𝑡 ≤ 0,
i.i.d.
∼ (0, 𝑰)∀𝑡 ∈N

(this is a trick suggested by Wooldridge (1994)).

Now notice that by construction the innovations are known:

𝜺−𝐻+1 = ... = 𝜺0 = 0 Ô⇒ 𝜺1 = 𝚿0(𝜽0)
−1𝒚1, 𝜺𝑡 = 𝚿0(𝜽0)

−1
⎡
⎢
⎢
⎢
⎢
⎣

𝒚𝑡 −
𝐻∑︁
ℎ=1

𝚿 ℎ(𝜽0)𝜺𝑡−ℎ

⎤
⎥
⎥
⎥
⎥
⎦

,

(VI.1)

but also, (𝜀)𝑡∈N is i.i.d. white noise by construction. This means that we can use (VI.1)
for estimation, whereas for asymptotics we exploit that (𝒚𝑡)𝑡≥𝐻+1 is strictly stationary and
ergodic. Now the  -QMLE is defined exactly as in (V.1), with15

𝒙𝑡 ∶= (𝜺
⊺
𝑡−1, ..., 𝜺

⊺
𝑡−𝐻)

⊺, 𝝁𝑡(𝒙𝑡 , 𝜽) ≡
𝐻∑︁
ℎ=1

𝚿 ℎ(𝜽)𝜺𝑡−ℎ, 𝛀 𝑡(𝒙𝑡 , 𝜽) ≡ 𝚿0(𝜽)𝚿0(𝜽)
⊺,

and we can make the following observations:

(i) Assuming Θ is compact, 𝑞 ∶= − log 𝑓 and 𝐿𝑇 satisfy the Assumptions (A0) and (A1) in
Theorem 2 (we can use the QMLE-notation from Section II and note that the conditional
moments are time-invariant functions, thus the density terms are time-invariant).

(ii) 𝐿𝑇(𝜽) = 1
𝑇

∑𝐻
𝑡=1 𝑞(𝒚𝑡 , 𝒙𝑡 , 𝜽)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=𝑂 𝑝(𝑇−1)

+ 𝑇−𝐻
𝑇
±
=1+𝑜(1)

⋅ 1
𝑇−𝐻

∑𝑇
𝑡=𝐻+1 𝑞(𝒚𝑡 , 𝒙𝑡 , 𝜽)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶𝑄𝐻

𝑇

,

where the boundedness of the first term is a consequence of 𝑞 a.s. cont. and Θ compact;
Birkhoff’s ergodic theorem now yields a pointwise LLN for 𝐿𝑇(𝜽); Then, provided an
integrable bound on ∣ log 𝑓 ∣ exists (not explored here), Lemma 2 ensures that a WULLN
holds: max𝜽∈Θ ∣𝐿𝑇(𝜽) −E{𝑞(𝒚𝑡 , 𝒙𝑡 , 𝜽)}∣

p
Ð→ 0.

(iii) We have by Proposition 5 an identifiably unique maximizer 𝜽0 of 𝜽 ↦ E{𝑞(𝒚𝑡 , 𝒙𝑡 , 𝜽)}.

15 I assume that a suitable identification criterion has been chosen, that allows to infer 𝚿0 from 𝚿0𝚿⊺0 .
Otherwise, maximizing the likelihood is endangered by the possibility that for the maximizer 𝜽0 there
exists a 𝝑, with (𝚿ℎ(𝜽0))ℎ∈{0,...,𝐻} = (𝚿ℎ(𝝑) ⋅𝑸 )ℎ∈{0,...,𝐻} for 𝑸 a rotation matrix; In such a case, the
likelihood of both MA-parameters is the same and the optimizer is not unique. This is in principle not a
problem for asymptotics, but undesirable for practical applications.
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Now (i)–(iii) imply, by Theorem 3, that 𝜽̂
p
Ð→ 𝜽0, i.e. that estimation of a FAIR-model using

 -QMLE is indeed consistent if the DGP is a FAIR-process.
For asymptotic normality we can check the Assumptions in Theorem 4 one by one:

(A0)–(A3)’ verified already

(A5) (a) follows analogously to the WULLN above – it only remains to be verified whether
we have an integrable bound; (b) follows from the MDS-CLT16, and the facts that
the first and second moments are correctly specified and that the model (𝝁,𝛀) is
dynamically complete.

Under these conditions, the FAIR- -QMLE-estimator for the FAIR-process (𝒚𝑡) is
asymptotically normal; we can estimate the variances as outlined above, noticing that the
score has zero autocorrelation, since it is an MDS.

VII. Conclusion
As for the cross-section case, QMLE-/M-estimation for time series represents a useful
framework to derive asymptotic properties of specialized estimators. In this report, I
reproduce the key results from this literature and show how they may be applied in the
specific use-case of simplified FAIR estimation. As with direct VMA-estimation, showing
consistency and asymptotic normality of the FAIR-estimator is not straightforward. While
the latent-variable-problem can perhaps be overcome by relying on the fundamentality of
the innovations (in principle, the same techniques as for direct VMA-estimation can be
applied), the approximation problem is probably best dealt with on the population level. That
is, one could show that the FAIR estimates converge in probability against a sequence of
population parameters 𝜽∗𝑇 (with dimension growing with 𝑇) which parametrize the 𝐾𝐿-best
approximation of a FAIR-process to the true VMA-model. The fact that we only have an
approximation means that unfortunately we cannot rely on the Bollerslev and Wooldridge
(1992)-approach, but have to define and analyze a new sequence of population objectives.
Then, convergence of the 𝜽∗𝑇 -induced MA-parameters against the true MA-parameters could
be addressed by the proof given by Barnichon and Matthes (2018) in their Appendix.

16 Applied to
√

𝑇 − 𝐻 1
𝑇−𝐻

∑𝑇

𝑡=𝐻+1 𝒔𝑡(𝒚𝑡 , 𝒙𝑡 , 𝜽0); This additionally requires fourth moments
to exist, E{∥𝒔𝑡(𝒚𝑡 , 𝒙𝑡 , 𝜽0)∥

4
4} < ∞, and the second moments to stabilize, i.e.

plim𝑇→∞
1

𝑇−𝐻
∑𝑇

𝑡=𝐻+1 𝒔𝑡(𝒚𝑡 , 𝒙𝑡 , 𝜽0)𝒔𝑡(𝒚𝑡 , 𝒙𝑡 , 𝜽0)
⊺
= lim𝑇→∞Var (

√

𝑇 − 𝐻 1
𝑇−𝐻

∑𝑇

𝑡=𝐻+1 𝒔𝑡(𝒚𝑡 , 𝒙𝑡 , 𝜽0))

to both exist. (By strict stationarity and ergodicity of (𝒚𝑡 , 𝒙𝑡), and uncorrelatedness of (𝒔𝑡(𝒚𝑡 , 𝒙𝑡 , 𝜽0)),
the ergodic theorem implies that existence of fourth moments of the score is sufficient for the stabilization
of second moments – the second condition is redundant.)
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Appendix

A. Derivation of equation (V.2)
The 𝑡-th summand of the objective is

log 𝑓𝑡(𝒘𝑡 , 𝜽) = −
1
2
⋅ [log det𝛀 𝑡(𝒙𝑡 , 𝜽) + (𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽))

⊺𝛀 𝑡(𝒙𝑡 , 𝜽)
−1(𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽))] + 𝑡.𝑖.𝑝.,

which itself consists of two summands. Differentiation of the first summand with respect to
𝜽 yields

𝜕

𝜕𝜽
{log det𝛀 𝑡(𝒙𝑡 , 𝜽)} = −

1
2
𝜕(vec(𝛀 𝑡(𝒙𝑡 , 𝜽)))⊺

𝜕𝜽
(𝛀 𝑡(𝒙𝑡 , 𝜽)

−1 ⊗𝛀 𝑡(𝒙𝑡 , 𝜽)
−1) ⋅ vec [𝛀 𝑡(𝒙𝑡 , 𝜽)] .

Note that here we take the transpose of the Jacobian to be the derivative. This is obtained as
follows: for some matrix 𝑯 , we have 𝜕 log det 𝑯

𝜕𝑯 ∶= [ 𝜕
𝜕[𝑯 ]𝑖, 𝑗

log det 𝑯]
𝑖, 𝑗∈{1,...,dim 𝑯}2

= (𝑯−1)⊺

(See Boyd et al., 2004, section A.4.1). Thus, 𝜕 log det𝛀
𝜕(vec𝛀)⊺ = (vec(𝛀−1))⊺ and using the chain

rule delivers 𝜕
𝜕𝜽⊺ {log det𝛀} = (vec(𝛀−1))⊺

𝜕 vec𝛀
𝜕𝜽⊺ , which yields the above expression after

transposing and using vec(𝑨𝑩𝑪) = (𝑪⊺ ⊗ 𝑨)vec 𝑩 for conformable matrices.
Differentiation of the second summand with respect to 𝜽 yields

𝜕

𝜕𝜽
{(𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽))

⊺𝛀 𝑡(𝒙𝑡 , 𝜽)
−1(𝒚𝑡 − 𝝁𝑡(𝒙𝑡 , 𝜽))} =

𝜕𝝁𝑡(𝒙𝑡 , 𝜽)

𝜕𝜽
𝛀 𝑡(𝒙𝑡 , 𝜽)

−1𝒖𝑡(𝒙𝑡 , 𝜽)

(A.1)

+
1
2
𝜕(vec(𝛀 𝑡(𝒙𝑡 , 𝜽)))⊺

𝜕𝜽
(𝛀 𝑡(𝒙𝑡 , 𝜽)

−1 ⊗𝛀 𝑡(𝒙𝑡 , 𝜽)
−1) ⋅ vec [𝒖𝑡(𝒙𝑡 , 𝜽)𝒖𝑡(𝒙𝑡 , 𝜽)⊺] .

That we get a sum of two terms is a consequence of the multivariate product-rule. The form
of the first summand is again a direct consequence of the product rule and the symmetry of
the differentiated term. The second term is not so straightforward to see. Consider first some
differentiable function 𝑿 ∶ R→ R𝑝×𝑝. Then the product rule delivers

𝜕

𝜕𝑡
{𝑿 (𝑡) ⋅ 𝑿 (𝑡)−1} =

𝜕

𝜕𝑡
{𝑰}

⇐⇒ 𝑿 (𝑡)
𝜕𝑿 (𝑡)−1

𝜕𝑡
+
𝜕𝑿 (𝑡)

𝜕𝑡
𝑿 (𝑡)−1 = 0

Ô⇒
𝜕𝑿 (𝑡)−1

𝜕𝑡
= −𝑿 (𝑡)−1 𝜕𝑿 (𝑡)

𝜕𝑡
𝑿 (𝑡)−1. (A.2)
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We now find 𝜕𝑿 −1

𝜕[𝑿 ]𝑖, 𝑗
by thinking of 𝑿 as a map 𝑡 ↦ [1{(ℓ, ℎ) = (𝑖, 𝑗)}𝑡 + 1{(ℓ, ℎ) ≠

(𝑖, 𝑗)}[𝑿 ]ℓ,ℎ]ℓ,ℎ∈... which we want to differentiate at 𝑡 = [𝑿 ]𝑖, 𝑗 . Using (A.2) we obtain

𝜕𝑿−1

𝜕[𝑿 ]𝑖, 𝑗
= −𝑿−1[1{(ℓ, ℎ) = (𝑖, 𝑗)}]ℓ,ℎ∈...𝑿

−1

Ô⇒
𝜕 vec(𝑿−1)

𝜕[𝑿 ]𝑖, 𝑗
= vec (−𝑿−1[1{(ℓ, ℎ) = (𝑖, 𝑗)}]ℓ,ℎ∈...𝑿

−1)

= −((𝑿−1)⊺ ⊗ 𝑿−1)vec ([1{(ℓ, ℎ) = (𝑖, 𝑗)}]ℓ,ℎ∈...)

= [−(𝑿−1)⊺ ⊗ 𝑿−1]
∶,𝑝⋅(𝑖−1)+ 𝑗

and thus 𝜕 vec 𝑿 −1

𝜕(vec 𝑿 )⊺ = −((𝑿
−1)⊺ ⊗ 𝑿−1). This can be applied as follows:

𝜕

𝜕(vec𝛀)⊺
𝒖⊺𝛀−1𝒖
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

=vec(𝒖⊺𝛀−1𝒖)=(𝒖⊺⊗𝒖⊺) vec(𝛀−1)=vec(𝒖𝒖⊺)⊺ vec(𝛀−1)

= −vec(𝒖𝒖⊺)⊺(𝛀−1 ⊗𝛀−1)

= − [(𝛀−1 ⊗𝛀−1)vec(𝒖𝒖⊺)]⊺ .

Using the chain rule one last time delivers the second summand of the derivative in (A.1).
∎
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